How Did China’s WTO Entry Affect U.S. Prices?

Mary Amiti
Federal Reserve Bank of New York

Mi Dai
Beijing Normal University

Robert C. Feenstra
University of California, Davis

John Romalis
University of Sydney

September 14, 2017

Abstract

We analyze the effects of China’s rapid export expansion following WTO entry on U.S. prices, exploiting cross-industry variation in trade liberalization. Lower input tariffs boosted Chinese firms’ productivity, lowered costs, and expanded export participation. We construct two instruments for U.S. prices: one for Chinese export participation; the other for Chinese export prices. Regressing U.S. CES price indexes on these instruments reveals that China’s WTO entry reduced the U.S. manufacturing price index by 7.6 percent between 2000 and 2006. More than two-thirds of the gains come from China reducing its own input tariffs, with additional gains from reduced tariff uncertainty for Chinese exporters.

* Amiti: Federal Reserve Bank of New York. 33 Liberty Street, New York, NY 10045 (email: mary.amiti@ny.frb.org); Dai: Business School, Beijing Normal University, Beijing 100875, China (email: daimi002@gmail.com); Feenstra: UC Davis (rcfeenstra@ucdavis.edu); Romalis: University of Sydney (john.romalis@sydney.edu.au). This paper was previously circulated with the title “How Did China’s WTO Entry Benefit U.S. Consumers?” We thank Pol Antras, Gordon Dahl, Gordon Hanson, Pablo Fajgelbaum, Kyle Handley, Dan Trefler, Maxim Pinkovskiy, and David Weinstein for insightful comments. We are grateful to Tyler Bodine-Smith and Preston Mui for excellent research assistance. Funding from the National Science Foundation is gratefully acknowledged. The views expressed in this paper are those of the authors and do not necessarily represent those of the Federal Reserve Bank of New York or the Federal Reserve System.
1 Introduction

China’s manufacturing export growth in the last 20 years has produced a dramatic realignment of world trade, with China emerging as the world’s largest exporter. China’s export growth was especially rapid following its World Trade Organization (WTO) entry in 2001, with the 2001–2006 growth rate of 30 percent per annum being more than double the growth rate in the previous five years. This growth has been so spectacular that it has attracted increasing attention to the negative effects of the China “trade shock” on other countries, such as employment and wage losses in import-competing U.S. manufacturing industries (Autor et al. (2013), Acemoglu et al. (2016), and Pierce and Schott (2016)). Surprisingly, given the traditional focus of international trade theory, little analysis has been made of the potential gains to consumers in the rest of the world, who could benefit from access to cheaper Chinese imports and more imported varieties. Our focus is on potential benefits to consumers in the U.S., where China accounts for more than 20 percent of imports. In principle, consumer gains could be driven by two distinct policy changes that occurred with China’s WTO entry. The first, which has received much attention in the literature, is the U.S. granting permanent normal trade relations (PNTR) to China, reducing the threat of China facing very high tariffs on its exports to the U.S. A second channel we identify through which China’s WTO entry lowered U.S. prices, is China reducing its own input tariffs.¹ In this paper, we quantify how much U.S. prices were reduced due to China’s WTO entry; and we identify that the key cause of this reduction was China lowering its own tariffs on intermediate inputs.

To measure China’s impact on U.S. prices, we utilize Chinese firm-product-destination level export data for the years 2000 to 2006, during which China’s exports to the U.S. increased nearly fourfold. One striking feature is that the extensive margin of China’s U.S. exports accounts for 85 percent of export growth, mostly due to new firms entering the export market (69 percent of total growth) rather than incumbents exporting new products (16 percent of total growth). To ensure we properly incorporate new varieties in measuring price indexes, we construct an exact CES price index, as in Feenstra (1994), which comprises a “price” and a “variety” component.² We find that the China import price index in the U.S. falls by 46 percent over the period 2000 to 2006 due to growth in export product variety. We supplement the Chinese data with U.S. reported trade data from other countries and U.S. domestic sales to construct overall U.S. manufacturing price indexes. With these data, we explicitly take into account that the China shock affects competitors’ prices and net entry into the U.S. market.

We model Chinese firm behavior by generalizing the Melitz (2003) model to allow firms to import intermediate inputs as in Blaum et al. (2016). We expect that China’s reduction of tariffs on intermediate inputs not only directly lowers firms’ marginal costs but also expands their international sourcing

¹We also consider the impact of other contemporaneous trade reforms when we check the robustness of our results in section 5.4. We use the term “WTO entry” as a shorthand for the specific trade reforms we study that occurred due to WTO entry.

²Broda and Weinstein (2006) built on this methodology to estimate the size of the gains from importing new varieties into the U.S. In contrast to that paper, we observe Chinese varieties within detailed trade categories at the firm level.
of these inputs, as in Antràs et al. (2017), Gopinath and Neiman (2014), and Halpern et al. (2015). We analyze how expanded sourcing of imported inputs raises Chinese firms’ productivity, further lowering marginal costs. Lower costs lead to lower export prices and to greater participation in export markets, expanding Chinese exports on both the intensive and extensive margins. We also analyze the impact of the reduction in tariff uncertainty due to PNTR, incorporating a simplified version of Handley and Limão (2017).

Building on our theoretical analysis, we construct and estimate empirical models of Chinese trade using highly disaggregated Chinese firm-product data for the period 2000 to 2006. Our empirical models reveal that China’s input tariff reductions significantly expand both the range and volume of inputs that firms import. Consistent with our model, the predicted expansion in the range of imported inputs increases firms’ total factor productivity (TFP), building on a literature finding that lower input tariffs increase firms’ TFP (e.g., Amiti and Konings (2007) for Indonesia; Kasahara and Rodrigue (2008) for Chile; Goldberg et al. (2010) for India; Halpern et al. (2015) for Hungary; Yu (2015) and Brandt et al. (2017) for China). Our theoretical analysis of Chinese firms’ imports and TFP guides our empirical analysis of their exporting activity, developing a literature connecting importing inputs and exporting (Feng et al. (2016) on China, Bas (2012) on Argentina, and Bas and Strauss-Kahn (2014) on France). China’s input tariff reductions lower firms’ costs both directly (through lower prices of materials) and indirectly (through higher measured TFP). We also find evidence consistent with the Kee and Tang (2016) finding that lower input tariffs also reduce the price of inputs sold by competing domestic producers and expand the range of domestic input varieties. Lower costs lead to lower export prices and more export participation. Additionally, PNTR leads to more export participation, which we incorporate by utilizing the “gap” between the U.S. column 2 tariff and the U.S. MFN tariff as in Pierce and Schott (2016), Handley and Limão (2017) and Feng et al. (2017). We aggregate model estimates from the firm-level to construct industry-level predictions of price changes for existing exporters and the growth of the number of exporters that stem solely from these trade reforms. These two novel instruments will enable us to identify the effect of China’s WTO entry on U.S. prices.

Literature estimating how China’s WTO entry benefited households and firms in another country is scarce. Handley and Limão (2017) study the effect of granting PNTR to China and estimate a 0.5 percent gain in U.S. consumer income due to the reduced policy uncertainty, but they do not study the input tariff reduction channel. Bai and Stumpner (2017) study total import penetration into the U.S. by industry, and show that increased import shares are associated with lower consumer prices in related AC Nielsen consumer goods categories. Their instrument for import penetration into the U.S. is Chinese product penetration into leading European markets; they are therefore agnostic on the underlying causes of rising import penetration. We construct our instruments from our model of production and trade using firm-level data and detailed tariff data, and are the first to estimate the gains to another country that stem from China’s substantial input tariff cuts upon WTO entry.

We combine the China-reported trade data with U.S.-reported data to incorporate all other for-
eign countries and domestic U.S. firms into the construction of exact CES U.S. price indexes for man-
ufacturing industries. For each non-U.S. country other than China, we use HS 10-digit U.S. import
data; for domestic sales by U.S. producers we use U.S. producer price indexes (PPI) for the common
goods component of the price index, and domestic sales shares of the top 4 U.S. firms for the variety
component of the price index. Regressions of these exact CES price indexes on our two WTO-entry
instruments reveal that China’s WTO entry reduced the U.S. price index of manufactured goods by
7.6 percent, averaging around 1 percent annually between 2000 and 2006, due to a lower conven-
tional price index and increased variety. Crucially, our analysis explicitly takes account of China’s
trade shock on competitor prices and entry. We find that nearly 60 percent of the WTO entry effect
comes through reductions in U.S. price indexes for Chinese goods, and 40 percent through reduc-
tions in price indexes for other competing goods. China’s competitors react to lower prices of Chi-
nese exports by cutting their own prices and, in some cases, by exiting altogether. Surprisingly, given
enormous new entry by Chinese firms, 65 percent of the WTO effect comes through the conven-
tional price index component, due to some competitors strong price reactions only partially offset by the
exit of others. Competitors have a much more muted response to expanded Chinese variety.

Our results show that most of the China WTO entry effect on U.S. prices is due to China reduc-
ing its own input tariffs rather than to PNTR. In our empirical models the effect of input tariffs is
pervasive. They have a strong effect on Chinese input imports and on TFP. They have a strong effect
on Chinese firms’ export participation and export prices. In contrast, PNTR has a significant effect
on Chinese firms’ export participation, but no effect on their TFP or export prices.\footnote{In our model we assume that firms set their prices after the tariff is known, so we do not expect an impact of PNTR on prices. But the entry decision is made before the tariff is known, so that entry is affected. In an expanded model like Handley and Limão (2017) we would also expect firms to upgrade their technology due to PNTR, so that labor productivity would improve. Our empirical models also test for an effect of PNTR on TFP and export prices.} PNTR therefore
contributes to our export variety instrument but not to our conventional export price instrument.
Since we find that at least two-thirds of China’s WTO effect comes via the conventional price index
instrument, we cannot escape the conclusion that the overall WTO entry effect is primarily driven by
lower Chinese input tariffs.

A potential limitation of our framework is that it does not explicitly allow variable markups, a
feature that has received renewed attention in De Loecker and Goldberg (2014), De Loecker et al.
(2016), and Brandt et al. (2017). Explicit modeling of variable markups is less important to our
analysis which focuses on gains that accrue to consumers; though it is of course important that
our demand system well-approximates how consumers value products. It is of less concern to us
whether our measures of TFP capture true productivity or a broader measure of “firm performance”.
What matters is that it captures the profit-generating capacity of the firm which dictates the export-
participation decision, and that this is affected by access to intermediate inputs. Another limitation
of our study is that we consider only the potential consumer benefits, and do not attempt to eval-
uate the overall welfare gains to the U.S. from China’s WTO entry. That broader question requires
a computable model. For example, Hsieh and Ossa (2016) calibrate a multi-country model with ag-
aggregate industry data at the two-digit level, and find that China transmits small gains to the rest of the world. More recently, Caliendo et al. (2015) combine a model of heterogeneous firms with a dynamic labor search model. Calibrating this to the United States, they find that China’s export growth created a loss of about 1 million jobs, effectively neutralizing any short-run gains, but still increasing U.S. welfare by 6.7 percent in the long-run. Both of these papers rely on the assumption of the Arkolakis et al. (2012) (ACR) framework of a Pareto distribution for firm productivities. In contrast, our approach does not rely on a particular distribution of productivities, and also differs from ACR in that we focus on the channels through which trade policy changes in one country (China) leads to consumer gains in another (the United States).

Our paper is organized as follows. Section 2 presents our key assumptions about producers and consumers. Section 3 examines the theoretical relationship between intermediate input use and firm productivity, and estimates how China’s trade liberalization upon WTO entry has affected Chinese firms’ intermediate input use and TFP. Section 4 studies how cost reductions from input tariff cuts and reduced policy uncertainty from PNTR affect export prices and export participation, and then estimates those effects for Chinese firms. Section 5 constructs U.S. manufacturing price indexes and trade-policy based instruments from the firm-level regressions in section 4, and then estimates the impact of China’s WTO accession on U.S. prices. Section 6 concludes.

2 Primitive Model Assumptions

2.1 Consumers

The representative consumer has a nested CES utility function. At the upper level, the utility from consuming goods \( g \in G \) in the United States in period \( t \) is:

\[
U_t = \left( \sum_{g \in G} \alpha_g \left( Q_{gt} \right)^{\frac{\kappa-1}{\kappa}} \right)^{\frac{\kappa}{\kappa-1}},
\]

(1)

where \( g \) denotes an HS 6-digit industry, \( G \) denotes the set of HS 6-digit codes; \( Q_{gt} \) is aggregate U.S. consumption of good \( g \) in period \( t \); \( \alpha_g > 0 \) is the taste parameter for the aggregate good \( g \); and \( \kappa \) is the elasticity of substitution across goods. Good \( g \) is a CES aggregate of HS6 goods from each country \( i \):

\[
Q_{gt} = \left( \sum_{i \in I_{gt}} \left( Q_{i,g,t}^{1-\frac{\sigma_g}{\sigma_g-1}} \right)^{\frac{\sigma_g}{\sigma_g-1}} \right)^{\frac{\sigma_g}{\sigma_g-1}},
\]

(2)

where \( Q_{i,g,t} \) is aggregate U.S. consumption in industry \( g \) of varieties produced by country \( i \in I_{gt} \), and \( \sigma_g \) is the elasticity of substitution between these aggregate country varieties. Each country’s aggregate variety is a CES aggregate of disaggregate varieties. Denoting consumption of the finest-
classification of product varieties by $q_{i\omega}^g$, aggregate U.S. consumption of country $i$ output in industry $g$ is:

$$Q_{i\omega}^g = \left( \sum_{\omega \in \Omega_{i\omega}^g} \left( \alpha_{i\omega}^g(\omega)q_{i\omega}^g(\omega) \right) \frac{\rho_g}{\rho_g - 1} \right)^{\frac{1}{\rho_g - 1}},$$

(3)

where $\alpha_{i\omega}^g(\omega) > 0$ is a taste or quality parameter for variety $\omega$ of good $g$ sold by country $i$; $\Omega_{i\omega}^g$ is the set of varieties; and $\rho_g$ is the elasticity of substitution between varieties in sector $g$, which we assume to be at least equal to the elasticity $\sigma_g$. The CES price index that is dual to (3) is:

$$P_{i\omega}^g = \left( \sum_{\omega \in \Omega_{i\omega}^g} \left( p_{i\omega}^g(\omega)/\alpha_{i\omega}^g(\omega) \right)^{1-\rho_g} \right)^{\frac{1}{1-\rho_g}}.$$  (4)

From equation (4) it follows that the share of product variety $\omega$ within the exports of country $i$ is,

$$s_{i\omega}^g(\omega) \equiv \left( \frac{p_{i\omega}^g(\omega)/\alpha_{i\omega}^g(\omega)}{\sum_{\omega \in \Omega_{i\omega}^g} p_{i\omega}^g(\omega)/\alpha_{i\omega}^g(\omega)} \right)^{1-\rho_g}.$$

(5)

2.2 Production

The production structure is a heterogeneous-firms model as in Melitz (2003) extended to incorporate domestic and imported intermediate inputs. Firms in industry $g$ considering exporting to the U.S. pay a sunk cost $F_{Eg}$ to draw a random productivity $\varphi_{ft}$, and then choose whether to pay per-period fixed costs of exporting $F_g$. Since our focus is on Chinese firms we temporarily suppress the superscript for country $i$ and the subscript for industry $g$. Firms produce output using the production function detailed in Blaum et al. (2016):

$$Y_{ft} = \varphi_{ft}L_{ft}^{\gamma} \left( (\alpha_DQ_{ft}^D)^{\frac{\sigma-1}{\sigma}} + (\alpha_MQ_{ft}^M)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{1}{\sigma-1}},$$

(6)

where $Y_{ft}$ is the output of firm $f$ in year $t$ with productivity $\varphi_{ft}$, using labor $L_{ft}$, the domestic intermediate input $Q_{ft}^D$, and the aggregate imported intermediate input $Q_{ft}^M$. The aggregate imported input is a CES aggregate of all imported inputs $n \in \Sigma_{ft}$ purchased by the firm, which Blaum et al. (2016) refer to as the sourcing strategy of the firm:

$$Q_{ft}^M = \left( \sum_{n \in \Sigma_{ft}} (\alpha_nq_{ftn})^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}.$$  (7)

2.3 Tariffs

Tariffs are levied on the inputs and the outputs of Chinese firms: $\tau_{nt}$ denotes one plus the ad valorem tariff that China charges on its imports of intermediate input $n$; and $\tau_{ht}$ is one plus the ad valorem U.S. tariff on Chinese exports. Prior to WTO entry there is tariff uncertainty, which we will analyze

---

6See also Antràs et al. (2017), Gopinath and Neiman (2014), Halpern et al. (2015), Amiti et al. (2014), Kasahara and Lapham (2013), Amiti and Davis (2011) for models of firm importing and exporting.
using a simplified version of Handley and Limão (2017). Chinese firms face two possible values of the U.S. tariff \( \tau_{ht} \in \{ \tau_{h}^{MFN}, \tau_{h} \} \), which are at either the MFN level or the alternative Column 2 level \( \tau_{h} > \tau_{h}^{MFN} \) that applied to communist countries such as China, if it did not receive the MFN tariff through an annual vote in the U.S. congress. We assume that Chinese firms decide to export prior to observing the tariff, but set prices after the tariff is known. Because prices are set after the tariff is known, tariff uncertainty does not affect those prices, but it will still affect the entry decision of exporters analyzed in section 4.2.

3 Intermediate Inputs and Firm Productivity

In this section we study the theoretical relationship between intermediate input use and firm productivity, before empirically estimating the effect of China’s WTO entry on Chinese firms’ intermediate input imports and productivity. The importance of intermediate inputs for productivity growth has long been studied theoretically (e.g. Ethier (1982), Romer (1987), Markusen (1989), and Grossman and Helpman (1991)), and as Ethier (1979) notes, the basic insight goes back to Adam Smith. Empirical evidence of this effect for China is also expanding (see for example, Yu (2015) and Brandt et al. (2017) empirically studying this effect for China, with the latter paper also emphasizing the role of output tariffs.

3.1 Theory

Blaum et al. (2016) extend the Feenstra (1994) and Broda and Weinstein (2006) insight for measuring the consumer gains from new imported varieties to measuring reductions in producer costs from new varieties of imported inputs. We develop that approach here. The unit-cost function for imported inputs dual to (7) is:

\[
c_{ft}^M = c\left(\{p_{nt}\tau_{nt}\}, \Sigma_{ft}\right) = \left( \sum_{n \in \Sigma_{ft}} \left(\frac{p_{nt}\tau_{nt}}{\alpha_n}\right)^{1-\rho} \right)^{1-\sigma},
\]

where \( p_{nt} \) denotes the net-of-tariff price that Chinese firm \( f \) pays for imports of intermediate input \( n \), and \( \{p_{nt}\tau_{nt}\} \) denotes the vector of tariff-inclusive prices. Let \( C_{ft} \) denote the unit-cost function for the production function in (6). Setting the wage equal to unity as the numeraire, the unit-cost function dual to (6) is:

\[
C_{ft} = C(P^D_t, c_{ft}^M, \varphi_{ft}) = \varphi_{ft}^{-1} \left( \left(\frac{P^D_t}{\alpha_D}\right)^{1-\sigma} + \left(\frac{c_{ft}^M}{\alpha_M}\right)^{1-\sigma} \right)^{\frac{1-\sigma}{1-\rho}}.
\]

To express the ratio of costs in two periods independently of the parameters \( \alpha_D \) and \( \alpha_M \), we choose the domestic input as the “common” intermediate input that is sold in both periods 0 and \( t \). Then the ratio of firm costs between period \( t \) and period 0 depends only on this price ratio and on the variety of intermediate inputs purchased, which is inversely related to the share of domestic inputs.\(^7\)

---

\( ^6 \)Unlike Handley and Limão (2017), we do not allow firms to upgrade their technology due to PNTR.

\( ^7 \)The result in (10) is derived by Blaum et al. (2016) and is also an immediate application of Theorem 2 in Feenstra (1994). That theorem states that the ratio of unit-costs for a CES function is the Sato-Vartia price index over “common”
\[
\frac{C_{ft}}{C_{f0}} = \frac{\varphi f_0}{\varphi f_t} \left( \frac{P^D_t}{P^D_0} \right)^{1-\gamma} \left( \frac{S^D_t}{S^D_0} \right)^{\frac{1-\gamma}{\pi-1}},
\]

where \(S^D_t\) is the share of total expenditure on intermediate inputs that is devoted to domestic inputs in period \(t\). Blaum et al. (2016) proceed by measuring the change in unit-costs using this domestic share variable, which endogenously reflects the sourcing strategy of the firm.\(^8\)

An alternative way to write the change in unit costs focuses more directly on the sourcing strategy. Using the unit-cost function over imported inputs \(c^M_{ft}\) in (8), let \(\Sigma_f \subseteq \Sigma_{ft}\cap \Sigma_{f0}\) be a non-empty subset of the “common” imported inputs purchased in periods 0 and \(t\). Then analogous to consumer CES indexes developed later in section 5.1, the index of firm costs for imported inputs between period \(t\) and period 0 is:

\[
\frac{c^M_{ft}}{c^M_{f0}} = \left[ \prod_{n \in \Sigma_f} \left( \frac{p_{nt} \tau_{nt}}{p_{n0} \tau_{n0}} \right)^{w_{nt}} \right] \left( \frac{\lambda_{ft}}{\lambda_{f0}} \right)^{\frac{1}{\pi-1}},
\]

where \(\lambda_{ft}\) is the expenditure on imported inputs in the common set \(\Sigma_f\) relative to total expenditure on imported inputs in period \(t\),\(^9\) and \(w_{nt}\) is the Sato-Vartia weight for input \(n\), defined as:

\[
w_{nt} \equiv \frac{(s_{nt} - s_{n0}) / (\ln s_{nt} - \ln s_{n0})}{\sum_{n \in \Sigma_f} (s_{nt} - s_{n0}) / (\ln s_{nt} - \ln s_{n0})},
\]

where \(s_{nt}\) is expenditure on input \(n\) divided by expenditure on all imported inputs in the common set \(\Sigma_f\). The first term on the right of (11) captures the direct effect of tariffs on costs, or the Sato-Vartia index of input prices inclusive of tariffs.\(^{10}\) The second term is the efficiency gain from expanding the range of inputs, resulting in \(\lambda_{ft} < \lambda_{f0} \leq 1\).

We can easily relate the efficiency gain in (11) back to the unit-costs of the production function \(C_{ft}\). The ratio of unit-costs can be written as a Sato-Vartia index over the ratio of wages in period \(t\) relative to period 0, the ratio of the price of the domestic intermediate input, and the ratio of the price of imported intermediate inputs. Since we are treating the wage as unchanged over time, we simply obtain:

\[
\frac{C_{ft}}{C_{f0}} = \frac{\varphi f_0}{\varphi f_t} \left( \frac{P^D_t}{P^D_0} \right)^{W^D_{ft}(1-\gamma)} \left( \frac{c^M_{ft}}{c^M_{f0}} \right)^{W^M_{ft}(1-\gamma)},
\]

\(^8\)A solution to the sourcing strategy is illustrated by Antrás et al. (2017).

\(^9\)Goldberg et al. (2010) adopt a similar approach to estimate the effect of trade liberalization of intermediate inputs on the number of domestic products produced in India.

\(^{10}\)Holding the net-of-tariff input prices constant, this first term corresponds to the index of input tariffs \(Input_{\tau_{gt}}\). Because Chinese firms often produce multiple products and we cannot disentangle which of the firm’s imports are used to produce each of its export goods, we cannot accurately measure the input weight \(w_{nt}\) for each input and output. So in section 3.2, we construct the index of input tariffs at the industry level \(g\), using the weights from an input-output table.
where \( W_{ft}^{D} \) (\( W_{ft}^{M} \)) is the Sato-Vartia weight of domestic (imported) inputs within total expenditure on intermediate inputs.\(^{11}\) We see that a reduction in the unit-cost of the import bundle in (11) corresponds directly to a reduction in overall unit costs in (13), by an amount that depends on the Sato-Vartia share of imported inputs. We expect that larger firms would have a greater share of expenditure on inputs, for example, and would therefore experience a greater efficiency gain from an expanded sourcing strategy.\(^{12}\)

We can re-express the above equations in several different ways to motivate our empirical work. First, substituting (11) into (13) and rearranging terms, we obtain:

\[
\left( \frac{P_{ft}^{D}}{P_{0}^{D}} \right)^{W_{ft}^{D}(1-\gamma)} \left[ \prod_{n \in \Sigma_{f}} \left( \frac{p_{nt}^{\tau_{nt}}}{p_{n0}^{\tau_{n0}}} \right)^{w_{nt}} \right] W_{ft}^{M}(1-\gamma) \left( \frac{C_{ft}}{C_{f0}} \right)^{-1} = \varphi_{ft} \left( \frac{\lambda_{ft}}{\lambda_{f0}} \right) - \frac{W_{ft}^{M}(1-\gamma)}{\rho-1} .
\]

(14)

The left-hand side of this equation is a measure of dual TFP, or the rise in prices of intermediate inputs (with wages normalized at unity) divided by the rise in marginal costs. On the right we see that dual TFP reflects the exogenous productivity term \( \varphi_{ft} \) and the endogenous change in import variety. Second, combining (10) with (14), we can readily solve for the change in the domestic share of intermediate inputs:

\[
\frac{S_{ft}^{D}}{S_{f0}^{D}} = \left[ \prod_{n \in \Sigma_{f}} \left( \frac{p_{nt}^{\tau_{nt}}}{p_{n0}^{\tau_{n0}}} \right)^{w_{nt}} \right] W_{ft}^{M}(\sigma-1) \left( \frac{P_{ft}^{D}}{P_{0}^{D}} \right)^{-W_{ft}^{M}(\sigma-1)} \left( \frac{\lambda_{ft}}{\lambda_{f0}} \right) \frac{W_{ft}^{M}(\sigma-1)}{\rho-1} .
\]

(15)

This equation emphasizes that the change in the domestic share is endogenous to the sourcing strategy of the firm and to the tariffs that it faces. Reflecting this, our approach will be to construct instruments that capture the right-hand side variables in (15), focusing on constructing instruments for \( \lambda_{ft} \) from trade liberalization upon WTO entry. We then use these instruments to identify how WTO entry affected the TFP of Chinese firms.

### 3.2 Trade Liberalization upon China’s WTO Entry

China joined the WTO in December 2001 and committed to bind all import tariffs at an average of 9 percent.\(^{13}\) Although China had previously reduced tariffs, average tariffs in 2000 were still high at 15 percent, with a large standard deviation of 10 percent. Our immediate goal is to determine the impact of China’s lower imported intermediate input tariffs on Chinese firms’ TFP. Identifying what is an input is not straightforward in the data, so we approach this in two ways. Our first approach exploits detailed data on Chinese tariffs \( \tau_{nt} \) and individual Chinese firms to estimate equations for each firm’s imports of inputs. We then use these regressions to estimate the effect of China’s tariff

---

\(^{11}\)Denoting the import share of intermediate input purchases by \( S_{ft}^{M} \), then \( W_{ft}^{D} = \frac{[S_{ft}^{D} - S_{f0}^{D}]/(\ln S_{ft}^{D} - \ln S_{f0}^{D})]}{[S_{ft}^{M} - S_{f0}^{M}]/(\ln S_{ft}^{M} - \ln S_{f0}^{M})] + (S_{ft}^{M} - S_{f0}^{M})/(\ln S_{f0}^{M} - \ln S_{f0}^{M})} \].

\(^{12}\)Amiti et al. (2014) find that large exporters have a greater share of imported intermediate inputs in their costs than small exporters. We find this same pattern for China.

\(^{13}\)See wto.org for more details.
<table>
<thead>
<tr>
<th>Year</th>
<th>Average (1)</th>
<th>Std Dev (2)</th>
<th>Average (3)</th>
<th>Std Dev (4)</th>
<th>Average (5)</th>
<th>Std Dev (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0.15</td>
<td>0.10</td>
<td>0.13</td>
<td>0.05</td>
<td>0.24</td>
<td>0.15</td>
</tr>
<tr>
<td>2001</td>
<td>0.14</td>
<td>0.09</td>
<td>0.12</td>
<td>0.05</td>
<td>0.24</td>
<td>0.15</td>
</tr>
<tr>
<td>2002</td>
<td>0.11</td>
<td>0.08</td>
<td>0.09</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0.10</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0.10</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: All tariffs are defined as the log of 1 plus the ad valorem tariff so a 5 percent tariff is \( \ln(1.05) \). The first column presents the simple average of China’s import tariffs on HS 8-digit industries. Column 3 presents the simple mean of the cost-weighted average of China’s input tariffs within an IO industry code, using weights from China’s 2002 input-output table. Column 5 presents the simple average of the “gap” defined as the difference between the U.S. column 2 tariff and the U.S. MFN tariff in 2000.

reductions on each firm’s imports of inputs, from which we construct instruments for the observed expansion of each firm’s inputs \( \lambda_{ft} \) when we estimate firm-level TFP.

Our second approach follows Amiti and Konings (2007) by constructing tariffs on intermediate inputs, \( \text{Input}_{tgt} \), using China’s 2002 input-output (IO) tables. The most disaggregated IO table available is for 122 sectors, with 72 of these in manufacturing. We take the HS 8-digit Chinese import tariff data, which are MFN ad valorem rates, and calculate the simple average of these at the IO industry level. The input tariff for each industry \( g \) is the weighted average of these IO industry tariffs, using the cost shares in China’s IO table as weights.\(^{14}\) Average tariffs for each year are reported in Table 1. Tariff levels fell on average by 40% (6 percentage points) over this period and their dispersion also declined. In general, the largest declines in tariffs were in products with the highest initial tariffs. The correlation between the 2000-2006 change in tariffs and the 2000 level is \( -0.7 \).

China implemented other reforms to export barriers, import barriers, and foreign direct investment (FDI) restrictions during the period encompassing China’s WTO entry, and these reforms may also have affected firm productivity and exports and therefore need to be included in our empirical analysis. Chinese firms faced restrictions on exporting and importing based on capital requirements, which were progressively removed during the sample period and were completely removed by 2004. Bai et al. (2017) studied the effect of relaxing export restrictions on Chinese firms’ export activity and productivity, and generously provided us with export-restriction data indicating the share of firms allowed to export within a CIC 4-digit industry, which we mapped to HS6 industries for our analysis. China Customs announced a list of products requiring an import license. Because the total number of licenses is subject to government control, the license essentially serves as a quota. Draw-

\(^{14}\)We thank Rudai Yang from Peking university for the mapping from IO to HS codes, which he constructed manually based on industry descriptions. We include both manufacturing and nonmanufacturing inputs and drop “waste and scrapping”.

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>Std Dev</th>
<th>Average</th>
<th>Std Dev</th>
<th>Average</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0.15</td>
<td>0.10</td>
<td>0.13</td>
<td>0.05</td>
<td>0.24</td>
<td>0.15</td>
</tr>
<tr>
<td>2001</td>
<td>0.14</td>
<td>0.09</td>
<td>0.12</td>
<td>0.05</td>
<td>0.24</td>
<td>0.15</td>
</tr>
<tr>
<td>2002</td>
<td>0.11</td>
<td>0.08</td>
<td>0.09</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0.10</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0.10</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
ing on annual circulars of the Ministry of Foreign Trade and Economic Cooperation and the Ministry of Commerce, we collect the list of HS 8-digit products to create a measure of the share of a firm’s imports that were subject to import license control. Around 5% of products were subject to license control in 2000, and this number dropped to 1% in 2006.

China maintained restrictions on inward FDI when it joined the WTO, including complete prohibitions in certain industries. These restrictions took various forms, such as: higher initial capital requirements; less favorable tax treatment; more complicated business registry and approval procedures; and in the case of joint ventures, requirements of majority shareholding by a Chinese party. China removed many restrictions following WTO accession. The Catalogue for the Guidance of Industries for Foreign Investment issued by the Ministry of Commerce of China lists the industries where FDI to China is “restricted” or “prohibited”. This list is amended every 3 to 5 years, and we use the lists issued in 1997, 2002 and 2004, mapping the Catalogue’s industry descriptions to HS8 digit codes. We categorize an industry as subject to an FDI restriction if it is either “restricted” or “prohibited”.

Upon China’s WTO entry, China benefited from trade liberalization by other countries. One benefit was the U.S. Congress granting Permanent Normal Trade Relations (PNTR). It is important to realize that PNTR did not actually change the tariffs that China faced on its exports to the U.S. The U.S. had applied MFN tariffs on its Chinese imports since 1980, but they were subject to annual renewal, with the risk of tariffs reverting to the much higher non-NTR tariff rates assigned to some non-market economies. These non-NTR tariffs are set at the 1930 Smoot-Hawley Tariff Act levels and can be found in “column 2” of the U.S. tariff schedule. Studies by Pierce and Schott (2016) and Handley and Limão (2017) find that the removal of the uncertainty surrounding these tariff rates helped boost China’s exports to the U.S. economy. Following this literature, we refer to this measure as the “gap” and define it as the difference between the column 2 tariff and the U.S. MFN tariff rate in 2000. We see from the last two columns in Table 1 that the average gap was very high at 24 percent, with a large standard deviation. We will exploit this cross-industry variation to analyze its effect on China’s U.S. exports.

Another important trade reform for China was the elimination of quotas for textile exports. Before WTO accession, China’s textile exports were subject to quota restrictions governed by the Multi-fiber Arrangement (MFA), and its successor, the Agreement on Textiles and Clothing (ATC). These restrictions were phased out in 2002 and 2005, leading to a surge in textile exports to the United States and Europe (Khandelwal et al. (2013)). Our data for MFA quotas are drawn from Brambilla et al. (2010), which provides the list of HS10 products under quota restrictions, and the period the quota was removed for each product. We use these data to construct dummy variables MFA2002 and MFA2005 which equal 1 if the quota was removed in 2002 and 2005 respectively.

To estimate the effect of this liberalization on Chinese firms, we need detailed information on the trade and production activity of those firms. China Customs provides annual trade data on values and quantities at the HS 8-digit level by firm-destination for the period 2000 to 2006. This
covers the universe of Chinese exporters. We restrict the sample to manufacturing products, which we identify using a mapping to SITC 1-digit codes in the range 5 to 8. We source production and input data from the Annual Survey of Industrial Firms (ASIF) produced by the National Bureau of Statistics. This survey of Chinese manufacturers is available for the same period as the customs data. It contains firm-level information on output, materials cost, employment, capital and wages. Each firm’s main industry is recorded at the 4-digit Chinese Industrial Classification (CIC) level. We keep all manufacturing industries, being CIC 2-digit industry codes 13 to 44. For some specifications, we need to combine the customs and industrial data sets. Since there are no unique firm identifiers across these two data sets, we relied on information on firm names, addresses, and zip codes to construct a “matched sample”. This comprises a third of exporting firms in the industrial data, which account for 50 percent of China’s total U.S. exports over this period. We use this matched sample of firms only when it is not possible to use the universe. The customs data show that the number of U.S. exporters more than tripled over the sample period (see Table B1). Appendix B provides more details on data construction.

3.3 Trade Liberalization and Chinese Firms’ Input Imports

To study the effect of WTO-induced trade liberalization on Chinese imports of intermediate inputs we estimate the following import value and import participation equations using firm-level data from China Customs and disaggregated raw import tariff data:

\[
\ln M_{fnt} = \gamma_1 \ln \tau_{nt} + \gamma_2 \ln \tau_{nt} \times Process_{f} + \gamma_f + \gamma_t + \epsilon_{1fnt}, \tag{16}
\]

\[
I_{fnt} = \theta_1 \ln \tau_{nt} + \theta_2 \ln \tau_{nt} \times Process_{f} + \theta_3 \ln \text{ShareEligible}_{gt} + \theta_4 \ln \text{ShareEligible}_{gt} \times \text{Foreign}_{f} \tag{17}
\]

\[+ \theta_f + \theta_t + \epsilon_{2fnt},\]

where \(\ln M_{fnt}\) is the log value of Chinese firm \(f\)’s imports in HS 8-digit category \(n\) at time \(t\), \(\tau_{nt}\) is the Chinese MFN import tariff, \(Process_{f}\) is an indicator variable that equals 1 if more than 99 percent of the firm’s imports were for processing and re-export, and \(\gamma_f\) and \(\gamma_t\) are full sets of firm and year fixed effects. Since \(\ln M_{fnt}\) is not defined for zero import values, we need to control for potential selection bias. We do so by estimating an import selection equation (17), where the dependent variable, \(I_{fnt}^{M}\), equals one if the firm imports an intermediate input in category \(n\) and zero otherwise. It comprises all of the explanatory variables in the import value equation plus an additional variable \(\text{ShareEligible}_{gt}\) measuring the share of firms with sufficient capital to be allowed to trade. Since that capital requirement depends on the industry the firm produces in, we merge data on this variable developed by Bai et al. (2017) using the firm’s largest export industry \(g\). We also interact \(\text{ShareEligible}_{gt}\) with a foreign firm indicator, as foreign firms are likely to have better access to capital.

We estimate the import participation equation using a linear probability model (LPM) instead of a probit model. This enables us to include the same fixed effects as in the import value equation.
and avoids the incidental parameter problem inherent in nonlinear models that gives rise to biased estimates. One potential drawback of using a LPM is that some of the predictions might lie outside the 0 to 1 range, although in practice there are very few of these observations. We control for selection bias in equation (16) by including a fourth order polynomial series of the predicted probabilities from equation (17). In an alternative specification we adopt a more flexible approach by including additional explanatory variables in (17) comprising interactions and polynomial series of all the variables in that equation, and then including a fourth order polynomial series of predicted probabilities in the import value equation.\footnote{See Das et al. (2003) and Dahl (2002).}

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
\hline
 & \multicolumn{2}{c}{\(I^M_{fnt} = 1 \text{ if } M_{fnt} > 0\)} & \multicolumn{2}{c}{\(\ln(M_{fnt})\)} \\
 & (1) & (2) & (3) & (4) \\
\hline
\(\ln(\tau_{nt})\) & -0.200*** & -5.466*** & -5.378*** & -5.121*** \\
 & (0.026) & (0.662) & (0.660) & (0.665) \\
\(\ln(\tau_{nt}) \times Process_f\) & 0.536*** & 5.531*** & 5.100*** & 4.619*** \\
 & (0.051) & (0.780) & (0.778) & (0.811) \\
\(\ln(Share\text{Eligible}_{gt})\) & -0.075*** & & & \\
 & (0.005) & & & \\
\(\ln(Share\text{Eligible}_{gt}) \times Foreign_f\) & 0.186*** & & & \\
 & (0.005) & & & \\
\hline
Selection Control & no & yes & yes & \\
\hline
Year FE & yes & yes & yes & yes \\
Firm FE & yes & yes & yes & yes \\
\hline
\# obs. & 25,599,921 & 7,027,916 & 7,027,916 & 7,027,916 \\
R\(^2\) & 0.048 & 0.152 & 0.152 & 0.153 \\
\hline
\end{tabular}
\caption{Chinese Input Imports}
\end{table}

Notes: All observations are at the HS8-firm-year level. The sample includes all Chinese importers that exported at least once to the U.S. during the sample period. All columns include firm fixed effects and year fixed effects. The dependent variable in column 1 equals 1 for positive import values and zero otherwise, 27.5\% of the observations equal 1. For columns 2 to 4, the dependent variable is the log of a Chinese firm’s import value at the HS 8-digit level at time \(t\). Both columns 3 and 4 control for selection, with the more flexible approach in column 4. We cluster standard errors at the HS 8-digit level. The Process dummy equals 1 if more than 99\% of the firm’s imports were processing over the sample, and the Foreign dummy equals 1 if the firm in China was classified as foreign at any time during the sample in the import customs data. We use the predictions from column 4 to construct instruments for firm-level TFP as described in the text.
We report results in Table 2. In column 1, we see that the probability of importing inputs increases when tariffs are lowered, but only for non-processing firms. Processing imports already enjoyed duty-free access so a lower tariff on those imports would not reduce the cost of importing and thus should not have a direct impact on imports. Lower tariffs actually appear to reduce the probability of importing for processing firms, which may be due to it being less worthwhile to comply with processing-trade requirements.\footnote{This result is consistent with Kee and Tang (2016). We also experimented with including the gap variable and its interaction with the WTO dummy in equation (17), but the coefficient was insignificant. Including the gap variable had no effect on the coefficients on the tariff variables.}

The import value regressions show that lower tariffs cause Chinese firms to increase imports on the intensive margin. In column 2 of Table 2, the coefficient on tariffs is negative and significant, $\gamma_1 = -5.5$, showing that trade liberalization increased imports for non-processing firms. In contrast, the coefficient on the tariff interacted with a processing dummy is positive, $\gamma_2 = 5.5$. The sum of $\gamma_1$ and $\gamma_2$ is not significantly different from zero, suggesting that the intensive margin for processing imports is not affected by lower tariffs. These results are robust to the two different sets of selection controls in columns 3 and 4, with the coefficients on tariffs very close to those in column 2.

Chinese tariff reductions caused Chinese firms to expand imports of inputs on both the extensive and intensive margins. This should also produce an increase in TFP according to equation (14). We now use the predicted values from column 4 of Table 2 (estimating equation (16)) to construct estimates of key components of $\lambda_{ft}$, which will become instruments in subsequent regression analysis of $TFP$ and Chinese firm exports. The first instrument is the firm’s fitted total imports at time $t$ —we take the exponential of the fitted import values $\ln \hat{M}_{tot,ft}$, summed across all of the firm’s imports $n$ in each year to get the firm’s total and then take the log. That instrument corresponds to the denominator of $\lambda_{ft}$. The numerator of $\lambda_{ft}$ is the expenditure on inputs that are common in period $t$ and period 0, or any non-empty subset of these common inputs. In practice, we found that many firms did not have common imported inputs over the entire sample period, so we could not construct predicted values for the numerator of $\lambda_{ft}$. Instead, we use the predicted import value of the firm’s largest HS 8-digit category import each year, and denote the fitted value of those imports by $\ln \hat{M}_{max,ft}$. Then the difference between these two instruments, $\ln \hat{M}_{max,ft} - \ln \hat{M}_{tot,ft}$, is a proxy for $\lambda_{ft}$, and is designed to capture the expansion of imported inputs on the extensive margin. Note that the two instruments are non-linear functions of the range of underlying tariffs $\tau_{it}$ applied to each firm’s specific imports, and can be used as instruments even in equations where the industry-level input tariffs $Input_{gt}$ enter linearly as regressors.

### 3.4 Imported Inputs and Total Factor Productivity

We now proceed to estimate how expanded input imports affected Chinese firms’ TFP. We estimate TFP using data on all manufacturing firms in the ASIF sample for the period 1998 to 2007. We follow Olley and Pakes (1996), by taking account of the simultaneity between input choices and productivity shocks using firm investment. We modify the procedure to incorporate the firm’s decision to
Table 3: China’s Productivity Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>Total factor productivity</th>
<th>Real value added per worker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All exporters</td>
<td>Matched sample</td>
</tr>
<tr>
<td></td>
<td>Simple av</td>
<td>Simple av</td>
</tr>
<tr>
<td>2001</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>2002</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>2003</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>2004</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>2005</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>2006</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Average</td>
<td>0.10</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Notes: Total factor productivity is estimated at the firm level as in Olley and Pakes (1996).

As a robustness check we also estimate TFP measures using the methodology in De Loecker (2013), which allows for learning by exporting. Our results are robust to these alternative measures.


For TFP estimation, we clean the ASIF data by dropping observations in the top and bottom percentile for changes in real value added, output, materials, and investment rates.

We interpret this measure as similar to the dual TFP on the left of (14), and import variety on the right of (14) will be one if its determinants. The TFP measures are all normalized relative to the firm’s main 2-digit CIC industry. From Table 3, we see that average TFP growth of Chinese exporters has been very high. For the average exporter in the full sample it has grown 10 percent per year, with similar growth of 11 percent per year in the matched sample. For comparison, we also report the average growth in real value added per worker, which shows a similar pattern to TFP growth.
though at slightly higher average rates of between 11 and 12 percent per annum. These TFP results are also similar to the benchmark results for Chinese manufacturers in Brandt et al. (2012).

Table 4: Chinese Firm TFP and Importing

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>$\ln(TFP_{ft})$</th>
<th>$\ln(TFP_{ft})$</th>
<th>$\ln(TFP_{ft})$</th>
<th>First Stage: $\ln(S^D_{ft})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>$\ln(S^D_{ft})$</td>
<td></td>
<td></td>
<td></td>
<td>-0.036***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.009)</td>
</tr>
<tr>
<td>$\ln(M_{max,ft})$</td>
<td>-0.041***</td>
<td>-0.041***</td>
<td>-0.042***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.013)</td>
<td></td>
</tr>
<tr>
<td>$\ln(M_{tot,ft})$</td>
<td>0.052***</td>
<td>0.051***</td>
<td>0.052***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>$\ln(\hat{\lambda}_{ft})$</td>
<td>-0.053***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln(Input_{\tau gt})$</td>
<td></td>
<td>0.275</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.435)</td>
<td>(0.442)</td>
<td></td>
</tr>
<tr>
<td>$\ln(Gap_g) \times WTO_t$</td>
<td></td>
<td></td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.062)</td>
<td></td>
</tr>
<tr>
<td>Year FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td># obs.</td>
<td>82,203</td>
<td>82,203</td>
<td>80,043</td>
<td>79,276</td>
</tr>
<tr>
<td>R²</td>
<td>0.692</td>
<td>0.692</td>
<td>0.692</td>
<td>0.703</td>
</tr>
<tr>
<td></td>
<td>0.691</td>
<td>0.692</td>
<td>0.691</td>
<td>0.703</td>
</tr>
<tr>
<td></td>
<td>0.692</td>
<td>0.691</td>
<td>0.691</td>
<td>0.703</td>
</tr>
</tbody>
</table>

Notes: The observations are at the firm-year level. The sample includes all firms that could be matched from the customs data with the ASIF survey, from which we estimate TFP. The dependent variable in the first 6 columns is $\ln(TFP)$ estimated using Olley-Pakes methodology as described in section 3.3. The $M$ variables are constructed from column 4 in Table 2, as described in the text, with $\ln(\hat{\lambda}_{ft}) = \ln(M_{max,ft}) - \ln(M_{tot,ft})$. In column 3, we add in the input tariff. Because the observations are at the firm-year level, we merged the input tariff and the gap that corresponded to the firm’s largest HS 6-digit total (world) export, which we denote as $g$. All columns are estimated using OLS, except column 6, where we instrument for the share of domestic inputs in total costs, $\ln(S^D_{ft})$, with $\ln(\hat{\lambda}_{ft})$, as shown in column 7. Alternatively, we could include the $M$ variables separately - this produces the same results, and passes the overidentification test and the first stage weak instrument test. All columns control for selection into importing nonparametrically. As the sample includes nonexporters, we do not need to control for export selection bias. All standard errors are clustered at the firm level.

We can see the effect of our two instruments for Chinese firms’ TFP in Table 4. In column 1, we regress $\ln(TFP_{ft})$ on the two instruments $\ln(M_{max,ft})$ and $\ln(M_{tot,ft})$, and see that they both have the expected signs, with a coefficient of -0.04 on $\ln(M_{max,ft})$ and +0.05 on $\ln(M_{tot,ft})$. In column 2, we include the difference between the two instruments $\ln(\hat{\lambda}_{ft}) = \ln(M_{max,ft}) - \ln(M_{tot,ft})$ to proxy for $\ln(\lambda_{ft})$, and we see that the coefficient of -0.05 has the expected negative sign. These results indicate that more imported varieties, due to lower tariffs, leads to higher firm-level TFP. In column 3, we also include the input tariff $Input_{\tau gt}$ that is associated with the firm’s largest HS 6-digit export industry (to the world). For example, if the firm’s largest export is apparel, then the input tariff is the weighted average of all of the intermediate inputs used to produce apparel. We find that the coefficient on
input tariffs is insignificantly different from zero, so we cannot reject the hypothesis that all TFP gains from lower input tariffs accrue through the firm importing more inputs. In column 4, we include the “gap” variable $Gap_g$ interacted with WTO entry to see if reducing tariff uncertainty in

the U.S. export market boosted Chinese firm TFP, but we find an insignificant coefficient close to zero.

Following our discussion in section 3.1, an alternative to using these two instruments to predict TFP is to instead use these instruments to predict the share of domestic inputs $S_D^{ft}$ in a first stage, and regress $\ln TFP_{ft}$ on $S_D^{ft}$ using $\hat{\lambda}_{ft}$ as an instrument in a second stage. This approach is closer to that of Blaum et al. (2016), though as we argued in section 3.1, it is import variety that we expect to be most important in any case. In column 5, we first use OLS to regress $\ln TFP_{ft}$ on $S_D^{ft}$, which is constructed as (total expenditure on domestic materials)/(total material costs + wage costs), and estimate a fairly small negative coefficient of $-0.04$. However, when we instrument for $S_D^{ft}$ with $\hat{\lambda}_{ft}$, the magnitude of the coefficient increases to $0.66$. We find that the instrument has the expected sign in the first stage regression in column 7. When we include the two $\hat{M}$ instruments separately we get very similar results.\footnote{We do not report these results to conserve space in Table 4.}

We now have several alternatives for constructing predicted values of TFP following WTO entry. We proceed by using column 1 to construct $\ln (\hat{TFP}_{ft}) = -0.04 \times \ln \hat{M}_{max,ft} + 0.05 \times \ln \hat{M}_{tot,ft}$, which we will use in section 4 to estimate models of Chinese firms’ export activity.

### 4 WTO Entry, Export Participation and Export Prices

We established in section 3 that lower tariffs on imported inputs caused an expansion in the variety of imported inputs and an increase in Chinese firms' TFP. In this section we will estimate the effect of Chinese WTO entry on Chinese firms participation in exporting to the US market and on their export prices. These are the two direct channels through which China’s WTO entry will affect US consumer prices. We expect relatively high export growth in Chinese industries that experienced the largest drops in their input tariffs. To preview the data, we plot Chinese exports to the U.S. in industries above and below the median input tariff cut of 4.6 percentage points in Figure 1. With exports of both bins indexed at 100 in 2001, we see substantially faster export growth in industries with larger reductions in their input tariffs.

#### 4.1 Tariffs and the Zero Cut-off Profit Condition

The production structure in section 2 is similar to Melitz (2003), extended to allow for tariffs on the inputs and the outputs of Chinese firms. We now re-introduce the subscript for industry $g$, which represents an HS 6-digit category. Within industry $g$, Chinese firms $f$ sell more disaggregate goods $h$ at the HS 8-digit level, so that $p_{fht}$ is the price of a product exported to the United States measured inclusive of U.S. tariffs. Under this notation, the firm-product pair $fh$ plays the role of the product index $\omega$ used in section 2.1. For simplicity, we temporarily ignore the taste parameters $\alpha_g$ and $\alpha_g^i(\omega)$.
Notes: The median input tariff cut over the sample period was 4.6 percentage points. The export industries with above-median input tariff cuts (from -4.6 to -11 percentage points) increased their export share from 67% of total to 72%). The export industries with below-median input tariff cuts experienced reductions in the range of -1.4 to -4.6 percentage points.

appearing in (1) and (3), and treat demand as symmetric, but these parameters will be re-introduced in section 4.4.

The firm’s price is obtained as a markup over marginal costs:

\[ p_{fht} = \frac{\rho_g}{(\rho_g - 1)} C(P_t^D, c_{ft}^M, \varphi_{ft}) \tau_{ht}, \] (19)

where \( \tau_{ht} \) is one plus the \textit{ad valorem} U.S. tariff. We assume that firms make their pricing decision after the tariff is known, so that these tariffs should be treated as U.S. MFN tariffs, while in the next section we allow for tariff uncertainly.

The quantity sold in the U.S. can be obtained from the CES demand function corresponding to (4),

\[ q_{fht} = \left( \frac{p_{fht}}{P_{gt}} \right)^{-\rho_g} \frac{X_{gt}}{P_{gt}}, \] (20)

where \( X_{gt} \) is the expenditure on all varieties that the U.S. imports from China in HS 6-digit industry \( g \), and \( P_{gt} \) is the price index for these imports (corresponding to \( P_i^t \) in (4) but without the superscript \( i = \text{China} \)). Multiplying this equation by the \( p_{fht} \) and using (19) , we solve for firm exports as:

\[ p_{fht} q_{fht} = X_{gt} \left( \frac{\rho_g C_{ft} \tau_{ht}}{(\rho_g - 1) P_{gt}} \right)^{1-\rho_g}. \] (21)

The export revenue of the firm must be divided by \( \tau_{ht} \) to reflect tariff payments, and then further divided by the elasticity \( \rho_g \) to obtain firm profits. These profits must exceed the fixed labor costs \( F_g \) of exporting, to give us the zero cut-off profit (ZCP) condition:
Provided that Chinese exporters make their pricing decisions after U.S. MFN tariff $\tau_{ht}$ is known, the MFN tariff will have minimal impact on the above equations because it has changed very little during our sample. Before China’s entry to the WTO, therefore, the risk that the U.S. tariff on China would revert to the column 2 level should not affect exporting firms’ prices, revenue or the ZCP condition, given their costs. But the risk of having the column 2 tariffs imposed will affect the free entry condition of Chinese firms (and the ZCP equation would become an exit condition), as we show in the next section.

4.2 Uncertainty in Tariffs and Export Participation

We now incorporate tariff uncertainty as introduced in section 2.3, using a simplified version of Handley and Limão (2017).\textsuperscript{21} Suppose that the Chinese firm faces two possible values of the U.S. tariff $\tau_{ht} \in \{\tau_{h}^{MFN}, \tau_{h}\}$, which are at either the MFN level or the alternative column 2 level $\tau_{h} > \tau_{h}^{MFN}$. We suppose that some component of the fixed costs of exporting is sunk, which is common across firms in industry $g$ and is denoted $F_{Eg}$, with the remaining per-period fixed costs of exporting denoted by $F_{g}$. Paying the sunk cost $F_{Eg}$ allows the firm to draw its productivity $\phi_{f}$, which we now treat as constant over time for simplicity. The firm’s decision about its price is made after the tariff is known, while the decision about whether to participate in the export market is made before the tariff is known, so the tariff is the key variable that changes over time. Our goal is to solve for the forward-looking condition that ensures entry of Chinese firms into exporting, or what we shall call export participation. This is more stringent than the ZCP condition in (22), which in the presence of sunk costs becomes the condition for a firm that already has its draw of productivity to exit from exporting.

The pricing decision, revenue and variable profits for the firm are still governed by equations (19), (21) and (22). After deducting the per-period fixed costs of exporting, the one-period value of the firm is,

$$v(\phi_{f}, \tau_{ht}) = \frac{p_{fht}q_{fht}}{\tau_{ht} \rho_{g}} - F_{g} = \frac{X_{gt}}{\tau_{ht} \rho_{g}} \left( \frac{\rho_{g} C_{f} \tau_{ht}}{(\rho_{g} - 1) P_{gt}} \right)^{1-\rho_{g}} - F_{g},$$

where we have substituted for export revenue from (21) and we now treat marginal costs $C_{f} = C(P^{D}, \phi_{f})$ as constant over time.\textsuperscript{22} $P_{gt}$ is the CES index as in (4) taken over the Chinese firms’ prices in (19), from which it follows that $P_{gt} = \rho_{g} C_{g} \tau_{gt} / (\rho_{g} - 1)$, where $C_{g}$ denotes the CES index.

\textsuperscript{21}Our simplified treatment does not allow firms to upgrade their technology, as in Handley and Limão (2017), and draws on Feng et al. (2017).

\textsuperscript{22}That is, in addition to assuming that productivity $\phi_{f}$ is constant over time, we suppose that there is no change to the prices or tariffs on Chinese domestic or imported inputs, and therefore no changes to the sourcing strategy, even if column 2 tariffs are imposed. This assumption can be weakened by allowing $C_{f}$ and $C_{g}$ to vary depending on whether MFN or column 2 tariffs are applied, but doing so would just lead to extra terms in (28) that we could not measure empirically in any case.
as in (4) but now taken over the Chinese firms’ marginal costs $C$. Substituting above, we obtain a slightly simpler equation for the one-period profits,

$$v(\varphi_f, \tau_h) = \frac{p_{fht}q_{fht}}{\tau_{ht} \rho_g} - F_g = \frac{X_{gt}}{\tau_{ht} \rho_g} \left( \frac{C}{C_g} \right)^{1-\rho_g} - F_g.$$  \hspace{1cm} \text{(23)}

We suppose for simplicity that if the tariff starts at its MFN level then it remains there in the next period with probability $\pi$, and with probability $(1-\pi)$ the tariff moves to its column 2 level; whereas if the tariff starts at its column 2 level then it stays there forever. This Markov process applies to all industries simultaneously. We need to keep track of what happens to overall Chinese exports under the differing tariffs, so let $X_g(X_g^{MFN})$ denote the value of Chinese exports $X_{gt}$ when all tariffs are at their column 2 (MFN) level.

With a discount rate $\delta < 1$, the present discounted value of a Chinese firm facing MFN tariffs is

$$V(\varphi_f, \tau_h^{MFN}) = v(\varphi_f, \tau_h^{MFN}) + \delta \left[ \pi V(\varphi_f, \tau_h^{MFN}) + (1-\pi)V(\varphi_f, \tau_h) \right].$$

Since $V(\varphi_f, \tau_h) = v(\varphi_f, \tau_h)/(1-\delta)$ by our assumption that the column 2 tariff is an absorbing state, we obtain the entry condition for a Chinese firm facing MFN tariffs,

$$\int \varphi V(\varphi, \tau_h^{MFN})dG = \int \varphi \left\{ \frac{v(\varphi, \tau_h^{MFN})}{(1-\delta \pi)} + \frac{\delta(1-\pi)v(\varphi, \tau_h)}{(1-\delta)(1-\delta \pi)} \right\} dG \geq F_g^E,$$  \hspace{1cm} \text{(24)}

where $G(\varphi)$ is the distribution function of firm productivities. We can simplify this condition by using (23) to obtain,

$$v(\varphi_f, \tau_h) + F_g = \left[ v(\varphi_f, \tau_h^{MFN}) + F_g \right] \left( \frac{X_g/\tau_h}{X_g^{MFN}/\tau_h^{MFN}} \right).$$

Substituting this term into (24), we obtain the export participation condition written in terms of one-period profits:

$$\int \varphi v(\varphi, \tau_h^{MFN})dG \geq (T_h - 1)F_g + T_h(1-\delta)F_g^E,$$  \hspace{1cm} \text{(25)}

where,

$$T_h \equiv \left\{ \frac{(1-\delta)}{(1-\delta \pi)} + \frac{\delta(1-\pi)}{(1-\delta \pi)} \left( \frac{X_g/\tau_h}{X_g^{MFN}/\tau_h^{MFN}} \right) \right\}^{-1}.$$  \hspace{1cm} \text{(26)}

These conditions hold in the presence of tariff uncertainty. After China’s entry to the WTO, U.S. tariffs are permanently at their MFN level, and the export participation condition for Chinese firms becomes

$$\int \varphi v(\varphi, \tau_h^{MFN})dG \geq (1-\delta)F_g^E.$$  \hspace{1cm} \text{(27)}

The right-hand side of (27) differs from (25) by the term $(T_h - 1)[F_g + (1-\delta)F_g^E]$, which we interpret as the “effective” tariff term $(T_h - 1)$ multiplied by fixed costs and amortized sunk costs. The
effective tariff we have obtained is similar to the results in Handley and Limão (2017) and Feng et al. (2017), except that in (26) we also keep track of what happens to overall Chinese exports to the U.S. Measuring the effective tariff \((T_h - 1)\) by the first-order approximation \((T_h - 1) \approx \ln T_h\), if discounting is small so that \(\delta \to 1\), we have that,

\[
\ln T_h \to \left(\ln \tau_h - \ln \tau_h^{MFN}\right) - \left(\ln X_g - \ln X_g^{MFN}\right).
\] (28)

The first term on the right of (28) is the “gap” between the column 2 and MFN ad valorem tariffs, as first used by Pierce and Schott (2016). That variable acts as an effective drop in the fixed costs of entry facing Chinese exporters following WTO accession, which will lead to greater entry of those firms. We will therefore incorporate the “gap” into the specification of our export participation equation. The second term on the right of (28) keeps track of what happens to the value of Chinese exports to the U.S. market. We will not attempt to measure this additional term, and in any case, it will be controlled for by including industry \(g\) fixed effects in the export participation equation, which will also control for differences in the fixed and sunk costs \(F_g\) and \(F_g^E\).

### 4.3 Empirical Analysis of Export Participation

We now estimate an export participation equation for Chinese exporters to the U.S. that is the empirical counterpart to the ZCP condition (22) and the entry conditions (25) and (27):

\[
I_{fht}^X = \delta_1 \ln TFP_f + \delta_2 \ln Input\tau_{gt} + \delta_3 \ln Input\tau_{gt} \times Process_{fh} + \delta_4 \ln P_{gt}^D + \delta_5 \ln Gap_g \times WTO_t \\
+ \delta_6 \ln ShareEligible_{gt} + \delta_7 \ln ShareEligible_{gt} \times Foreign_f + \delta_f + \delta_h + \delta_t + \epsilon_{3fht}.
\] (29)

The binary dependent variable \(I_{fht}^X\) equals 1 if the Chinese firm \(f\) had positive U.S. exports in product \(h\) at time \(t\), and zero otherwise. From equations (21) and (22) we can see that firm marginal costs are critical to satisfying the ZCP condition. We control for marginal costs by including: i) predicted TFP; ii) the industry-level index of input tariffs \(Input\tau_{gt}\); and iii) an index of the domestic prices of intermediate inputs in each industry \(g\), \(P_{gt}^D\).23 From section 4.2 we see that we also need to control for PNTR as effective fixed/sunk costs fall between (25) and (27) when China joins the WTO. The fall in those fixed/sunk costs is captured by \(Gap_g\), as in (28). We also include \(ShareEligible_{gt}\), measuring the share of firms that met China’s capital requirements to engage in international trade, and its interaction with \(Foreign_f\), an indicator variable that equals 1 if firm \(f\) was ever classified as foreign, since foreign firms may have systematically different capital levels to domestic firms. The \(Gap_g\) and \(ShareEligible_{gt}\) variables affect the export participation decision but not the intensive margin of exporting; these variables will therefore provide useful exclusion restrictions when we need to control for selection in our export price equations in section 4.4.

---

23These are the domestic intermediate input price indexes, constructed by aggregating industry output deflators from Brandt et al. (2017) using the same Chinese IO table described in section 3.2.
Table 5: Chinese Firms U.S. Exports

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>( t_{fht} = 1 ) if ( X_{fht} &gt; 0 )</th>
<th>( \ln(s_{fht})/(1 - \bar{\rho}) )</th>
<th>( \ln(\text{price}_{fht}) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \ln(TFP_{ft}) )</td>
<td>1.918*** (0.033)</td>
<td>-1.000(^\dagger)</td>
<td>-1.000(^\dagger)</td>
</tr>
<tr>
<td>( \ln(TFP_{ft}) )</td>
<td>-0.938*** (0.149)</td>
<td>-1.062*** (0.292)</td>
<td></td>
</tr>
<tr>
<td>( \ln(\text{Input}_{gt}) )</td>
<td>-1.948*** (0.452)</td>
<td>3.101*** (1.167)</td>
<td>3.645** (1.583)</td>
</tr>
<tr>
<td>( \ln(\text{Input}<em>{gt}) \times \text{Process}</em>{fh} )</td>
<td>-0.198 (0.153)</td>
<td>-1.689*** (0.572)</td>
<td>-1.165** (0.516)</td>
</tr>
<tr>
<td>( \text{Process}_{fh} )</td>
<td>0.020 (0.012)</td>
<td>0.172** (0.066)</td>
<td>0.113* (0.064)</td>
</tr>
<tr>
<td>( \ln(\text{P}_{gt}) )</td>
<td>0.024 (0.096)</td>
<td>0.466** (0.188)</td>
<td>0.470** (0.187)</td>
</tr>
<tr>
<td>( \ln(\text{Gap}<em>{g}) \times \text{WTO}</em>{t} )</td>
<td>0.070* (0.036)</td>
<td></td>
<td>-0.034 (0.111)</td>
</tr>
<tr>
<td>( \ln(\text{ShareEligible}_{gt}) )</td>
<td>-0.012 (0.024)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \ln(\text{ShareEligible}<em>{gt}) \times \text{Foreign}</em>{f} )</td>
<td>0.251*** (0.017)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( HS6 \text{ Industry \times Year FE} \) no yes yes no no no
\( HS6 \text{ Industry FE} \) yes no no yes yes yes
\( Year \text{ FE} \) yes no no yes yes yes
\( Firm \text{ FE} \) yes yes yes yes yes yes

Selection Control no no no yes

# obs. 3,983,952 158,473 23,155 1,332,574 1,315,157 1,315,157
R\(^2\) 0.129 0.951 0.951 0.951

\(^\dagger\) The coefficient, \( \beta_1 \), is constrained to equal -1.

Notes: All observations are HS8-firm-year. In column 1, the sample includes all Chinese firms that exported at least once to the U.S. during the sample period. The dependent variable in column 1 equals 1 for positive export values (35.1%) and zero otherwise. \( \ln(TFP_{ft}) \) are the fitted values constructed from column 4 in Table 2. \( \ln(\text{Input}_{gt}) \) is the input tariff constructed using China’s input-output table at the IO level, mapped to HS 6-digit industry codes. \( \text{Process}_{fh} \) is a processing dummy equal to 1 if more than 99% of a Chinese firm’s U.S. exports in HS8 industry \( h \) are processing. \( \text{Gap}_{g} \) is the difference between HS 6-digit column 2 and MFN tariffs, while \( \text{ShareEligible}_{gt} \) is the share of firms eligible to export in HS 6-digit industry \( g \). The \( \text{Foreign} \) dummy equals one if the firm in China was classified as foreign at any time during the sample in the customs data. In columns 2 and 3, the dependent variable is a Chinese firm’s exports to the U.S. in HS 8-digit industry \( h \) as a share of total Chinese U.S. exports in the corresponding HS6 category, divided by \( 1 - \bar{\rho} \), where \( \bar{\rho} \) is the median estimated elasticity of substitution (\( = 4.57 \), see section 5.2.1 for more detail). Columns 2 and 3 are estimated using IV and include industry \times year fixed effects as well as firm fixed effects. The dependent variable in columns 4 to 6 is the log of the unit value of Chinese firms exports to the U.S. estimated using weighted least squares (WLS) with export value weights. Column 6 controls for selection into importing and exporting. All standard errors are clustered at the IO industry level, except in columns 2 and 3 where they are clustered at the firm level.
We estimate the export participation equation (29) using all firm-industry observations for the period 2000 to 2006 for the set of firms that have at least one non-zero U.S. export observation. The dependent variable is equal to 1 if the firm had positive export value in product \( h \), defined at the HS 8-digit level, and zero for all \( fht \) observations where the firm did not export in those HS 8-digit categories. We include: year fixed effects to control for macro factors that affect overall entry and exit; firm fixed effects to take account of unobserved firm heterogeneity; and industry effects since firms can span many products. We include the fitted TFP variable, \( \hat{TFP}_{ft} \), directly in the export selection equation instead of instrumenting for measured TFP so that we can use the full sample of exporting firms, otherwise we would only be limited to using the much smaller matched sample.

We present the results in column 1 of Table 5. We find that the coefficient on predicted \( \ln \hat{TFP}_{ft} \) is positive and significant, showing a higher probability of exporting for firms with higher predicted TFP arising from more imported inputs. The coefficient on China’s input tariff suggests that lower Chinese import tariffs on intermediate inputs increase the probability of exporting. This input tariff variable is interacted with an export processing dummy at the firm-HS8 level, defined as equal to 1 if the Chinese firm’s exports to the U.S. in HS8 were more than 99% processing over the sample period. The coefficient on this interaction term is insignificant, suggesting that there is no significant differential effect of lower input tariffs on the export probabilities of processing and ordinary export firms. This is somewhat surprising, but could reflect spillover benefits for all firms. For example, lower input tariffs could also lower prices of domestically produced inputs, as we discuss below.

We also find that the probability of exporting to the U.S. increases in the post-WTO period in industries where \( \text{Gap}_g \) is high, consistent with the literature (see Pierce and Schott (2016)). Once China entered the WTO, the threat of raising U.S. import tariffs to the high column 2 tariffs was removed, increasing the expected profitability of exporting in those industries. The positive coefficient on the interactive \( \text{ShareEligible} \) variable with the foreign dummy is consistent with the idea that foreign firms are in a better position to meet capital requirements for entering export markets.

An important implication of these results is that China’s WTO accession caused an exogenous expansion in the number of firms exporting from China to the U.S. This will be invaluable for identifying the effect of expanded Chinese trade on the U.S. price index.

### 4.4 WTO Entry and Chinese Firms’ U.S. Export Prices

China’s WTO entry not only affects export participation, but also China’s export prices. To study this, we start with the firm pricing equation (19) and reintroduce the taste parameters \( \alpha_i^g(\omega) \) from the CES price index (4), which we interpret as product quality. We drop the superscript \( i \) for China and rewrite these quality parameters as \( \alpha_{fht} \), where as in section 4.1, the firm-product pair \( fh \) plays the role of \( \omega \). We suppose that the specification of firms’ marginal costs in section 4.1 refers to the cost of producing one unit of a quality adjusted quantity \( \alpha_{fht}q_{fht} \), which would sell at the quality adjusted price \( p_{fht}/\alpha_{fht} \). Then (19) is re-written as
\[
\frac{p_{fht}}{\alpha_{fht}} = \frac{\rho_g}{(\rho_g - 1)} C(P^D_t, c^M_{ft}, \varphi_{ft}) \tau_{ht},
\]

(30)

In the empirical counterpart to (30) we take logs and measure marginal costs using: i) TFP, which will be treated as endogenous; ii) the index of input tariffs \(\text{Input}_g\); and iii) the index of domestic prices of intermediate inputs in each industry \(g, P^D_{gt}\). The tariff variable \(\tau_{ht}\) is the U.S. MFN tariff on China’s exports to the U.S., which differs hardly at all over our sample period and is absorbed into firm, industry, and year fixed effects \(\beta_f, \beta_h\) and \(\beta_t\). This gives us:

\[
\ln p_{fht} = \beta_1 \ln TFP_{ft} + \beta_2 \ln \text{Input}_g + \beta_3 \ln P^D_{gt} + \beta_f + \beta_h + \beta_t + \epsilon_{4fht},
\]

(31)

where unobserved quality \(\alpha_{fht}\) from the left of (30) is absorbed into the error term in (31), \(\epsilon_{4fht} \equiv \ln \alpha_{fht}\). Since the TFP of Chinese firms is an inverse measure of marginal costs, we expect a coefficient of \(\beta_1 = -1\). Product quality will likely be correlated with the firm’s TFP, which means that we would not obtain an unbiased estimate of \(\beta_1\) even when attempting to instrument for TFP. We can correct for the quality bias by substituting the pricing equation (31) into the log share equation for Chinese firms in (5) to obtain:

\[
\ln \frac{s_{fht}}{(1 - \bar{\rho})} = \ln \left(\frac{p_{fht}}{\alpha_{fht}}\right) - \ln P_{gt} = \beta_f + \beta_g + \beta_1 \ln TFP_{ft} + (\epsilon_{4fht} - \ln \alpha_{fht}),
\]

(32)

where \(\beta_g \equiv \beta_t - \ln P_{gt} - \beta_2 \ln \text{Input}_g - \beta_3 \ln P^D_{gt}\) are introduced as year x HS 6-digit industry fixed effects, which absorb all industry \(g\) variables. Given the error term in the pricing equation (31) is \(\epsilon_{4fht} \equiv \ln \alpha_{fht}\), the error in (32) cancels out, which will allow us to obtain an unbiased estimate of \(\beta_1\) from this share equation. We should really think of the dependent variable in (32) as reflecting the quality-adjusted price of each firm (relative to the industry price index), analogous to Hallak and Schott (2011) and Khandelwal (2010). The dependent variable is the value of a Chinese firm’s exports in product \(h\) to the U.S. relative to total Chinese exports to the U.S. in \(g\) divided by one minus the median estimated elasticity \(\bar{\rho}\) in industry \(g\) (equal to 4.57). Imposing this unbiased estimate of \(\beta_1\) in the pricing equation 31, we can estimate the remaining parameters of that equation and construct predicted export prices. We also include firm fixed effects to control for unobserved firm heterogeneity. We estimate equation (32) using the two \(\hat{M}\) variables capturing predicted imported input expansion from section 3 as instruments for measured \(\ln TFP\). We report the results in columns 2 and 3. In the untabulated first stage results, the coefficient on \(\ln \hat{M}_{\text{max}, ft}\) is \(-0.06\) and the coefficient on \(\ln \hat{M}_{\text{tot}, ft}\) is \(+0.05\), both significant at the 1 percent level and similar in magnitude to those in the

\footnote{The error will also incorporate terms reflecting the fact that the pass-through coefficient \(\beta_1\) differs across firms, as discussed in the next footnote. As analyzed by Murtazashvili and Wooldridge (2008), pooling across firms to obtain a single coefficient means that additional terms are introduced into the error.}

\footnote{Amiti et al. (2016) show that in our nested CES framework, if the market shares of firms are not infinitesimally small then a pass-through of less than unity (in absolute value) that differs across firms is obtained. We allow for any magnitude of \(\beta_1\) in our empirical analysis, but we find that \(\beta_1 = -1\) is not rejected.}

\footnote{We discuss estimation of elasticities in section 5.2.1 below.}
firm-level regressions in column 3 of Table 4. Both pass the overidentification and weak instrument
tests.\footnote{We don’t report the first stages to save space and because the coefficients on the two instruments are so close to the regression results in Table 4. The Cragg-Donald Wald F-stat in column 2 is 172.29 and the p-value for the overid test is 0.10. In column 3, the F-stat is 32.8 and the overid p-value is 0.43.} In column 2, we include all possible observations from the matched sample and find that we cannot reject that the coefficient $\beta_1$ on $\ln TFP_{ft}$ equals $-1$. To check whether sample selection is affecting the magnitude of this coefficient, we re-estimate equation (32) using a balanced sample in column 3, that is only including the observations for which the Chinese firm exports the same HS8 product to the U.S. in all years.\footnote{We cannot use the propensity scores from the participation equations here because of the presence of industry \times year fixed effects, which would invalidate our exclusion restrictions.} The $\beta_1$ estimate in both columns is close to $-1$. We impose this result in the subsequent columns reporting export price regressions.

In columns 4-6 the dependent variable, $\ln price_{fhf}$, is the log unit value of each Chinese exporting
firm $f$ in each product $h$, inclusive of freight, insurance, and duties.\footnote{The results are unchanged for firm unit values that exclude duties because the U.S. MFN import tariffs are very low and have hardly changed over the sample period. For this reason, the MFN tariff is not included on the right of (31).} We regress the export prices on input tariffs and constrain the coefficient $\hat{\beta}_1$ on $\ln TFP_{ft}$ to be $-1$. The observations are weighted using export values, so that observations where exports are higher (and unit values may be measured with more precision) are given more weight. The results in columns 4-6 show that lower input tariffs cause lower export prices, and the coefficient on input tariffs is surprisingly high, ranging between 3.1 and 3.6, depending on the specification. The coefficient on the input tariff interacted with a processing dummy is negative and significant, but the sum of the two coefficients is still positive, indicating that processing export prices are also lower when there are lower input tariffs. These results are similar to what we found in column 1, which focused on the probability of exporting, and suggest that lower input tariffs have a beneficial impact on all Chinese firms using these inputs, even those engaged in processing exports who did not face the input tariff.

One explanation for these findings is that the reduction in input tariffs also lowers the price of domestic firms producing the same inputs. However, we already control for $\ln P^D_{gt}$ in Table 5, which has a significant positive coefficient of 0.47, indicating that lower prices of domestically purchased intermediate inputs also lowers export prices. Although the inclusion of $\ln P^D_{gt}$ in the equation results in a lower coefficient on input tariffs it still remains large.\footnote{The coefficient on $Input_{\tau gt}$ in a specification like column 5 but without $\ln P^D_{gt}$ is 4.1.} Another explanation we propose for these findings is that lower input tariffs actually lead to greater entry and product variety of domestic input-consuming firms. The result that lower tariffs enhance entry into the domestic industry is found to hold under weak conditions by Caliendo et al. (2015), in a model with heterogeneous firms.\footnote{According to Theorem 1 of Caliendo et al. (2015), this result follows if there is a non-traded sector in the economy, and that tariff revenue is distributed to consumers who spend it on the traded and non-traded sectors. From Lerner symmetry, an import tariff in this setting is equivalent to an export tax, which reduces entry in the differentiated sector, so that a reduction in tariffs (near free trade) raises entry.} Indeed, Kee and Tang (2016) found increased purchases of domestic Chinese intermediate inputs since its WTO entry, especially among processing exporters. They attribute that increase to China’s trade and investment liberalization, which they argue led to a greater variety of domestic materials
becoming available at lower prices. We have not been able to include the variety of domestic inputs in our analysis, and to the extent that it is positively correlated with the tariff reductions on imported intermediate inputs, that can help explain the large coefficients on lnInput\textsubscript{τgt} found in Table 5.

We see that these results in the pricing equation are robust to controlling for selection bias in column 5, with selection into exporting modeled using the predicted probabilities from column 1 in Table 5 and for importing from column 1 in Table 2. Finally, in column 6, we show that Gap\textsubscript{g} has a small coefficient, insignificantly different from zero, consistent with the validity of this variable as an exclusion restriction in the export participation equation. The positive coefficient on input tariffs continues to be large and significant.

To summarize results so far, lower Chinese input tariffs increase Chinese firms’ imports of intermediate inputs, both on the intensive and extensive margins, and thus increase their TFP. This, in turn, increases their probability of entry into the U.S. market. Lower input tariffs also reduce Chinese firms’ export prices in the U.S. market. The effect from PNTR is more limited, with no direct effect on export prices, but an effect through new entry into exporting. We now turn to evaluate how these effects feed into the U.S. price index.

5 Impact on U.S. Prices

5.1 Measuring the U.S. CES Price Index: Theory

Our goal is to compute a price index that accurately reflects consumer utility given the nested CES structure in section 2.1. We start with equation (4) and consider two equilibria with theoretical price indexes \( P_{gt}^i \) and \( P_{g0}^i \), which reflect different prices \( p_{gt}^i(\omega) \) and \( p_{g0}^i(\omega) \) and also differing sets of varieties \( \Omega_{gt}^i \) and \( \Omega_{g0}^i \). We assume that these two sets have a non-empty intersection of varieties, denoted by \( \Omega_{g}^i = \Omega_{gt}^i \cap \Omega_{g0}^i \). We refer to the set \( \Omega_{g}^i \) as the “common” varieties, available in periods \( t \) and \( 0 \).

Feenstra (1994) shows how the ratio of \( P_{gt}^i \) and \( P_{g0}^i \) can be measured, as:

\[
\frac{P_{gt}^i}{P_{g0}^i} = \left[ \prod_{\omega \in \Omega_{g}^i} \left( \frac{p_{gt}^i(\omega)}{p_{g0}^i(\omega)} \right) \right] \left( \frac{\lambda_{gt}^i}{\lambda_{g0}^i} \right) \frac{1}{\rho_g - 1}, \quad i = \text{China},
\]

(33)

where \( w_{gt}^i(\omega) \) are the Sato-Vartia weights at the variety level, defined using the shares \( \bar{s}_{gt}^i(\omega) \) within the common set,

\[
w_{gt}^i(\omega) \equiv \frac{(\bar{s}_{gt}^i(\omega) - \bar{s}_{g0}^i(\omega)) / (\ln \bar{s}_{gt}^i(\omega) - \ln \bar{s}_{g0}^i(\omega))}{\sum_{\omega \in \Omega_{g}^i} (\bar{s}_{gt}^i(\omega) - \bar{s}_{g0}^i(\omega)) / (\ln \bar{s}_{gt}^i(\omega) - \ln \bar{s}_{g0}^i(\omega))}, \quad \bar{s}_{gt}^i(\omega) \equiv \frac{p_{gt}^i(\omega) q_{gt}^i(\omega)}{\sum_{\omega \in \Omega_{g}^i} p_{gt}^i(\omega) q_{gt}^i(\omega)},
\]

(34)

and

\[
\lambda_{gt}^i \equiv \frac{\sum_{\omega \in \Omega_{g}^i} p_{gt}^i(\omega) q_{gt}^i(\omega)}{\sum_{\omega \in \Omega_{g}^i} p_{gt}^i(\omega) q_{gt}^i(\omega)} = 1 - \frac{\sum_{\omega \in \Omega_{gt}^i \setminus \Omega_{g0}^i} p_{gt}^i(\omega) q_{gt}^i(\omega)}{\sum_{\omega \in \Omega_{g}^i} p_{gt}^i(\omega) q_{gt}^i(\omega)},
\]

(35)
and likewise for $\bar{s}^i_{g0}(\omega)$ and $\lambda^i_{g0}$, defined as above for $t = 0$.

The first term in equation (33) is constructed in the same way as a conventional Sato-Vartia price index—it is a geometric weighted average of the price changes for the set of varieties $\Omega^i_g$, with log-change weights. The second component comes from Feenstra (1994) and takes into account net variety growth: $\lambda^i_g$ equals one minus the share of expenditure on new products, in the set $\Omega^i_{gt}$ but not in $\Omega^i_{g0}$, whereas $\lambda^i_{g0}$ equals one minus the share of expenditure on disappearing products, in the set $\Omega^i_{g0}$ but not in $\Omega^i_g$. A lower $\lambda$ ratio implies more net variety, and hence a lower price index.

Note that the quality of products in the “common” set $\Omega^i_g$, as reflected by their taste parameters $\alpha^i_g(\omega)$, is assumed to be constant over time, but products outside this set and appearing within the $\lambda^i_g$ terms can have changing quality. To achieve this in theory we can choose $\Omega^i_g$ as any non-empty subset of $\Omega^i_{gt} \cap \Omega^i_{g0}$ for which the products have constant quality, and the price index formulas above continue to hold true (see Feenstra (1994)). In practice, however, it is hard to know which products have constant quality, so we shall simply use $\Omega^i_g = \Omega^i_{gt} \cap \Omega^i_{g0}$.

While (33) provides us with an exact price index for varieties sold from country $i$ (China) to the U.S., we also want to incorporate all other countries selling good $g$. This can be done in principle by using the exact price index for every other country, as we have done for China. But we will not be able to implement that approach because we do not have the firm-level export data for all other countries. Instead, for countries exporting to the U.S. other than China we will use their unit-values at the HS 10-digit level, and we will measure the product variety of these HS 10-digit products within each HS 6-digit industry. That is, for each HS 6-digit industry, we can construct the variety terms $\lambda^i_{gt}$ for the HS 10-digit products exported by each country to the U.S. and the change in variety using (35). We also construct the Sato-Vartia index over the “common” unit-values $uv^j_{gt}(\omega)$ for 10-digit HS categories $\omega \in \Omega^j_g$ within each HS 6-digit industry, exported by each country other than China in the periods $t$ and 0. For these other exporters, we therefore measure,\(^{32}\)

$$
\frac{P^j_{gt}}{P^j_{g0}} = \left[ \prod_{\omega \in \Omega^j_g} \left( \frac{uv^j_{gt}(\omega)}{uv^j_{g0}(\omega)} \right) \frac{w^j_{gt}(\omega)}{w^j_{g0}(\omega)} \right] \left( \frac{\lambda^j_{gt}}{\lambda^j_{g0}} \right)^{1-\rho_g / \rho_g}, \quad j \neq i.
$$

We will aggregate over these U.S. import price indexes from all source countries $j$, including the U.S. itself, using Sato-Vartia price weights defined over countries. Denoting the non-empty intersection of countries selling in industry $g$ to the U.S. in period $t$ and period 0 by $I_g = I_{gt} \cap I_{g0}$, which we call the “common” countries, the Sato-Vartia weights at the country-industry level are

\(^{32}\)In Appendix A we show how the Sato-Vartia indexes over unit-values for exporting countries other than China can be improved to become a Sato-Vartia index over prices by using the Herfindahl index of exporting firms from these countries to the U.S.
\[ W^j = \frac{\left( S^j_{gt} - S^j_{g0} \right)}{\sum_{k \in T_{gt}} \left( S^k_{gt} - S^k_{g0} \right)} \left( \ln S^j_{gt} - \ln S^j_{g0} \right), \quad \text{with} \quad S^j_{gt} = \sum_{k} P^j_{kt} Q^j_{kt}, \quad j \in T_{gt}. \]  

(37)

The share of countries selling to the U.S. in both period \( t \) and period 0 is,

\[ \Lambda_{gt} \equiv \frac{\sum_{j \in T_g} P^j_{gt} Q^j_{gt}}{\sum_{j \in T_g} P^j_{gt} Q^j_{gt}}. \]  

(38)

Then we can write the change in the overall U.S. price index for industry \( g \) as,

\[ \frac{P_{gt}}{P_{g0}} = \left( \prod_{j \in T_g} \left( \frac{P^j_{gt}}{P^j_{g0}} \right)^{w^j} \right) \left( \frac{\Lambda_{gt}}{\Lambda_{g0}} \right)^{\frac{1}{\sigma_g - 1}}. \]  

(39)

The second term on the right of (39) accounts for countries that begin exporting to the U.S. in industry \( g \) during the 2000-2006 period, or who drop out due to competition from China, for example. If a country \( j \) selling to the U.S. in the base period drops out entirely and no longer sells in period \( t \), then that will lower \( \Lambda^j_{g0} \) and raise the price index in (39). Provided that the loss in variety from exiting firms and exiting countries is not greater than the gain in variety due to entering Chinese firms, then there will still be consumer variety gains due to the expansion of Chinese trade following its WTO entry. The overall price index (39) accounts for all these offsetting effects, and it will be the basis for our calculations of U.S. consumer welfare.

Using all the above equations, we can decompose this industry \( g \) price index as,

\[ \ln \frac{P_{gt}}{P_{g0}} = \ln \left[ \prod_{\omega \in \Omega_g} \left( \frac{P^j_{gt}(\omega)}{P^j_{g0}(\omega)} \right)^{w^j_{gt}(\omega)} \right] + \ln \left[ \prod_{j \in T_g \setminus i} \prod_{\omega \in \Pi^j_g} \left( \frac{w^j_{gt}(\omega)}{w^j_{g0}(\omega)} \right)^{\frac{w^j_{gt}(\omega)}{\sigma_g - 1}} \right] \]

\[ + \ln \left( \frac{\lambda^j_{gt}}{\lambda^j_{g0}} \right)^{w^j_{gt}} + \ln \left[ \prod_{j \in T_g \setminus i} \left( \frac{\lambda^j_{gt}}{\lambda^j_{g0}} \right)^{\frac{w^j_{gt}}{\sigma_g - 1}} \right] \left( \frac{\Lambda_{gt}}{\Lambda_{g0}} \right)^{\frac{1}{\sigma_g - 1}}. \]  

(40)

The first term on the right is a conventional Sato-Vartia price index for Chinese imports, constructed over common goods in industry \( g \) available both years. The second term is the Sat-Vartia index constructed over the unit-values \( w^j_{gt}(\omega) \) in industry \( g \) for all other exporting countries, where \( \omega \) measures the HS 10-digit products within each HS 6-digit industry, but using the PPI for the U.S. The third term is the gain from increased varieties from China, constructed using Chinese firm-level
export data. The fourth term is the combined welfare effect (potentially a loss) of changing variety at the HS 6-digit level from other countries \(j\) and from the U.S. itself.\(^{33}\)

To aggregate over goods, we follow Broda and Weinstein (2006) and again use the Sato-Vartia weights, now defined at the industry level as:

\[
W_{gt} = \frac{(S_{gt} - S_{g0}) / (\ln S_{gt} - \ln S_{g0})}{\sum_{g \in G} (S_{gt} - S_{g0}) / (\ln S_{gt} - \ln S_{g0})},
\]

with \(S_{gt} \equiv \frac{P_g Q_g}{\sum_{g \in G} P_g Q_g}\). (41)

Then we can write the change in the overall U.S. price index of manufactured goods as,

\[
\frac{P_t}{P_0} = \prod_{g \in G} \left( \frac{P_{gt}}{P_{g0}} \right)^{W_{gt}}.
\]

The U.S. price index that we construct in this way reflects the U.S. prices of all manufactured goods, whether these goods are used as intermediate inputs or as final goods. We envisage that measured price changes are passed through to the ultimate purchasers of these goods, as happens in many models with CES demand. In our robustness analysis (section 5.4), we separate final goods from intermediate inputs, obtaining what is closer to a U.S. CPI over final goods and a PPI over intermediate inputs, respectively. This completes our description of how we will construct the U.S. price index of manufactured goods. We now turn to implementing these equations and estimating China’s impact on this index.

5.2 Measuring the U.S. CES Price Index: Data and Preliminary Estimates

To calculate the U.S. price index of manufactured goods in equation (40), we need measures of China’s export prices, other foreign export prices, U.S. domestic prices, measures of variety, and estimates of elasticities of substitution. For these, we utilize several data sources. The first is from China Customs, as described in section 5.1. We use these data to construct the China components of the overall U.S. price index as described in section 4.4. We supplement the China-reported trade data with U.S.-reported data to incorporate all other foreign countries and domestic U.S. firms in the construction of the U.S. price index for manufacturing industries. For U.S. imported goods from countries other than China, we use customs data at the HS 10-digit-country level from the U.S. Census; for domestic sales by U.S. producers we use the U.S. producer price indexes (PPI) for the common goods component of the price index, and domestic sales shares of the top 4 U.S. firms, also available from U.S. Census, for the variety component of the price index. Both of these are at the NAICS 6-digit level, which we map to HS10. Because we don’t have firm-product level data for the non-China components of the U.S. price index, we also present a robustness check where we adjust equation (40) using Herfindahl indexes in the second component, as described in Appendix A. These

---

\(^{33}\)That is, for the United States itself, where we will use the Producer Price Index (PPI) in each industry to measure the Sato-Vartia index. For the U.S. variety term in each industry we follow Feenstra and Weinstein (2017) and use the share of sales accounted for by the largest four firms, which is a valid measure of \(\lambda_{j}^{g}\) if these are the same firms over time in each industry.
Table 6: Distribution of Elasticities of Substitution

<table>
<thead>
<tr>
<th></th>
<th>China $\rho_g$</th>
<th>Other countries $\rho_g$</th>
<th>$\sigma_g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentile 5</td>
<td>1.68</td>
<td>1.47</td>
<td>1.54</td>
</tr>
<tr>
<td>Percentile 25</td>
<td>3.02</td>
<td>2.28</td>
<td>2.41</td>
</tr>
<tr>
<td>Percentile 50</td>
<td>4.57</td>
<td>2.94</td>
<td>3.42</td>
</tr>
<tr>
<td>Percentile 75</td>
<td>9.14</td>
<td>4.61</td>
<td>4.64</td>
</tr>
<tr>
<td>Percentile 95</td>
<td>33.77</td>
<td>17.27</td>
<td>15.83</td>
</tr>
<tr>
<td>Mean</td>
<td>11.45</td>
<td>6.47</td>
<td>6.79</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>32.05</td>
<td>21.93</td>
<td>36.93</td>
</tr>
</tbody>
</table>

Notes: The China $\rho_g$ are estimated using Chinese firm-HS8 level US export data for each HS 6-digit industry $g$. The “Other countries” $\rho_g$ are estimated using U.S. import data at the HS 10-digit country level. And the $\sigma_g$ are elasticities of substitution across different countries’ HS6 digit goods exported to the U.S. The summary stats are reported for the 1,599 HS6 industries in Table 8.

Herfindahls are from Feenstra and Weinstein (2017), built up using firm-HS10-digit data from PIERS bills of lading sourced data and complementary sources described in Appendix B.

5.2.1 Elasticities

We estimate the elasticity of substitution between varieties following Feenstra (1994), Broda and Weinstein (2006), and Soderbery (2015).\(^{34}\) For China’s exports to the U.S., we estimate the elasticities of substitution across varieties, defined at the firm-HS 8-digit level and within an HS 6-digit industry, $\rho_g$.\(^{35}\) This parameter enters in the variety adjustment for Chinese goods in the price index—the second term in equation (33) and the third term in equation (40). The median $\rho_g$, reported in Table 6, is 4.57. We estimate a big range in the elasticities. Variety growth in industries with low elasticities will generate the largest gains whereas variety growth in industries with high elasticities will have a smaller effect on the U.S. price index.

For countries other than China, we do not have data at the firm-product level so we estimate elasticities of substitution across varieties defined at the HS 10-digit level within an HS 6-digit industry for each country. The methodology is otherwise the same as for China, except that we constrain the elasticities to be the same for all these other countries within an industry $g$.\(^{36}\) We see that the median elasticity for “other countries” is lower at 2.9. This was expected because a variety is defined at a more aggregate level. Finally, we estimate $\sigma_g$, the elasticity of substitution between varieties in industry $g$ produced in different countries that appears in the last term of equation (40). We estimate $\sigma_g$ in two steps. First, we calculate an exact price index for each country-HS6 pair using equation

\(^{34}\)This methodology is also used in Ossa (2015).

\(^{35}\)We trim outliers by dropping any price ratios greater than 10 or less than 1/10. If there were insufficient observations to estimate an elasticity for an HS 6-digit industry, we used the median in the next level of aggregation.

\(^{36}\)We estimate the elasticities using U.S. import data for the top 40 countries which account for 95 percent of U.S. manufacturing imports. See Appendix B for more details on the estimation of the elasticities.
and the within-country elasticity of substitution $\rho_g$, and then we estimate the between-country elasticity, $\sigma_g$, using the same procedure as with the $\rho_g$'s. The median estimate of $\sigma_g$ is 3.4.\(^\text{37}\)

### 5.2.2 Estimating the U.S. CES Price Index

We now estimate the four components of the US price index in equation (40) by industry, and then aggregate across goods using the industry level Sato-Vartia weights defined in equation (41). We commence with the Chinese components of the index. China’s manufacturing exports to the U.S. grew a spectacular 290 percent over the sample period, with growth rates of around 30 percent every year except in 2001 (see Table 7). How much of this growth comes from new varieties is very important for our study. As noted in section 5.1, we measure Chinese products at the firm-HS 8-digit level. Denoting the value of Chinese exports to the U.S. by $X_{fht}$ for firm $f$ and product $h$ in year $t$, we decompose China’s aggregate export growth to the U.S. as follows:

$$
\frac{\sum_{fh}(X_{fht} - X_{fh0})}{\sum_{fh}X_{fh0}} = \frac{\sum_{fh\in\Omega}X_{fht} - \sum_{fh\in\Omega}X_{fh0}}{\sum_{fh}X_{fh0}} + \frac{\sum_{fh\in\Omega_t\setminus\Omega_0}X_{fht} - \sum_{fh\in\Omega_t\setminus\Omega_0}X_{fh0}}{\sum_{fh}X_{fh0}},
$$

\(43\)

where $\Omega = \Omega_t \cap \Omega_0$ is the set of varieties (at the firm-product level) that were exported in $t$ and $t = 0$, $\Omega_t \setminus \Omega$ is the set of varieties exported in $t$ but not in 0 and $\Omega_0 \setminus \Omega$ is the set of varieties exported in $t_0$ but not in $t$. This equation is an identity that decomposes the total export growth into the intensive margin (the first term on the right) and the extensive margin (the last term), which we report in Table 7. Surprisingly, most of this growth arises from net variety growth. From the bottom of column 3, we see that the extensive margin accounts for 85 percent of export growth to the U.S. over the whole sample period (columns 2 and 3 sum to 100 percent of the total growth). In many countries, new entrants do not account for a large share of export growth because new firms typically start off small. But for China, even in the year-to-year changes the extensive margin accounts for around 40 percent of export growth. We can further break down the extensive margin to see if it is driven by incumbent exporters shipping new products or new firms exporting to the U.S. We see from columns 4 and 5 that the extensive margin is almost entirely driven by new exporters —69 percent of the total export growth over the sample period comes from new firms and the other 16 percent is by incumbent firms exporting new products (columns 4 and 5 sum to the total extensive margin in column 3).

Table 7 clearly shows that most of the growth in China’s exports was due to new entrants into the U.S. export market. This result is robust. Given that some firms change their identifier over time due to changes of firm type or legal person representatives, we tracked firms over time (using information on the firm name, zip code and telephone number) to ensure that the firm maintains the same identifier. This affects 5 percent of firms and hardly changes the size of the extensive margin. Even if our algorithm for tracking reclassifications has missed some identifier changes for incumbent firms

\(^\text{37}\)It is not a complete surprise that the median $\sigma_g$ is slightly higher than the “other-countries” $\rho_g$. While we estimate $\rho_g$ across different HS 10-digit varieties, we estimate $\sigma_g$ using price indexes that incorporate the same HS 10-digit categories.
Table 7: Decomposition of China’s Export Growth to the U.S.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Export Growth %</th>
<th>Intensive Margin</th>
<th>Extensive Margin</th>
<th>Extensive Margin new firms</th>
<th>Extensive Margin incumbents</th>
<th>Due to Chinese Variety</th>
<th>Weighted by China Share</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>2001</td>
<td>4.2</td>
<td>0.09</td>
<td>0.91</td>
<td>0.75</td>
<td>0.17</td>
<td>-0.018</td>
<td>-0.001</td>
</tr>
<tr>
<td>2002</td>
<td>29.8</td>
<td>0.56</td>
<td>0.44</td>
<td>0.21</td>
<td>0.22</td>
<td>-0.040</td>
<td>-0.004</td>
</tr>
<tr>
<td>2003</td>
<td>32.2</td>
<td>0.61</td>
<td>0.39</td>
<td>0.23</td>
<td>0.16</td>
<td>-0.081</td>
<td>-0.004</td>
</tr>
<tr>
<td>2004</td>
<td>35.1</td>
<td>0.65</td>
<td>0.35</td>
<td>0.23</td>
<td>0.12</td>
<td>-0.026</td>
<td>-0.004</td>
</tr>
<tr>
<td>2005</td>
<td>29.4</td>
<td>0.57</td>
<td>0.43</td>
<td>0.22</td>
<td>0.21</td>
<td>-0.079</td>
<td>-0.005</td>
</tr>
<tr>
<td>2006</td>
<td>25.6</td>
<td>0.65</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
<td>0.010</td>
<td>-0.003</td>
</tr>
<tr>
<td>2000-2006</td>
<td>290.0</td>
<td>0.15</td>
<td>0.85</td>
<td>0.69</td>
<td>0.16</td>
<td>-0.460</td>
<td>-0.031</td>
</tr>
</tbody>
</table>

Notes: All these margins are calculated using manufacturing data concorded to HS 8-digit codes at the beginning of the sample. The sum of the intensive margin (column 2) and the extensive margin (column 3) equal 100 percent. The sum of the extensive margin of new firms (column 4) and the extensive margin of incumbent firms (column 5) equals the total extensive margin (column 3). Column 6 converts the variety gain in column 3 to the equivalent change in the price index i.e. the second term on the right of equation (33) and column 7 computes the third term on the right of equation (40), both weighted using the Sato-Vartia weights in equation (42).

due to, for example, mergers and acquisitions, our approach to measuring the gains from Chinese firm entry into the U.S. market is driven by net entry, which is largely unaffected by reclassifications of product codes or firm codes, as the new entry would be offset by the exit. In Appendix Table C1 we show that rapid extensive-margin growth is present under a range of alternative definitions of a variety.38

Rapid export variety growth leads to a large reduction in Chinese export prices due to the extensive margin, reported in column 6, where we report the year-to-year variety adjustment in the China price index and the variety gain over the whole sample period, 2000-2006, i.e. the second term in equation (33). The lambda ratios are raised to a power that includes the elasticity of substitution ρg, and then weighted using the industry-level Sato-Vartia weights as in equation (42). So column 6 reports the effective drop in the U.S. import price index from China due to the new varieties, which amounts to −46 percent over 2000-2006. Notice that this total change at the bottom of column 6 is not the same as summing the year-to-year changes in the earlier rows, because the calculation for 2000-2006 is performed using the exports that are “common” to those two years. If there is a new variety exported from China in 2001, for example, then its growth in exports up to 2006 is attributed to variety growth; whereas in the earlier rows, only its initial value of exports in 2001 is attributed to variety growth. This method of using a “long difference” to measure variety growth is consistent

38In the Appendix Table C1, we also show that the very high extensive margin is present when we use alternative ways to define a variety, including HS6-firm, HS4-firm, and HS2-firm, provided we keep the firm dimension. Furthermore, this large extensive margin is present in various subsamples of the data, including nonprocessing trade, consumer goods, nontraders and private firms.
with the theory outlined in section 2.1, as it allows for increases in the U.S. taste parameter for that
Chinese export in the intervening years as it penetrates the U.S. market.

To see the contribution of China’s export variety growth on the overall U.S. manufacturing sector
price index, we need to adjust the values of the variety index in column 6 by China’s weight in the
entire U.S. market (not just the import shares) in each industry $g$. We do this using the Sato-Vartia
weights at the country-industry level from equation (37), as in the third term in equation (40), before
weighting across industries $g$ as in equation (42). Column 7 shows that the US manufacturing sector
price index drop due to variety gain from China is 3.1 percent.

China’s export variety growth is just one of the components of the change in the U.S. CES price
index for manufactured goods, appearing as the third term “ChinaV$_g$” on the right of equation (40).
We also calculate the other three components at an industry-level and then aggregate them across
industries. Each of these components and their sum are reported in the top row of Table 8. The U.S.
import price index of common Chinese goods (the first term in brackets in equation (33)), calculated
using the firm-product-destination level China Customs data, rose by an average of 1.76 percent per
year, causing “ChinaP$_g$” to add 1.3 percent to the U.S. manufacturing price index. The price index for
other common goods (including from the U.S.) “OtherP$_g$”, calculated from HS 10-digit U.S. import
data and U.S. PPI data, contributed 4.9 percent; while the variety component “OtherV$_g$” for other
countries (including the U.S.), calculated from HS 10-digit U.S. import data for foreign countries
while U.S. variety growth is calculated using U.S. census data on the share accounted for by the
largest four firms, contributed 0.0 percent. These four components together sum to a 3.1 percent
increase in the U.S. manufacturing price index between 2000 and 2006.

5.3 Estimating the Impact of China’s WTO Entry on U.S. Prices

To analyze how China’s WTO entry benefited U.S. consumers, we estimate how much the U.S. man-
facturing price index moved due to China’s WTO entry. The price index comprises the four compo-
nents on the right side of (40), including both the common goods price index and variety components
for China and all other countries. Since all of these prices are likely to be correlated and jointly de-
termined, we need an exogenous instrument related to China’s WTO entry. That is, we need to
construct the variation in China’s common goods component (the first term in (40)) and the variation
in China’s variety component (the third term in (40)) solely due to China’s WTO entry, which we
will denote as $\hat{ChinaP}_g$ and $\hat{ChinaV}_g$, respectively. We discuss how these instruments are obtained
from our earlier regressions shortly. With our instruments in hand, we will regress the U.S. price
index on the two instruments, to obtain the overall impact of China’s entry into the WTO on the U.S.
manufacturing price index:\footnote{Regressing the U.S. price index in equation 44 on the change in input tariffs results in a positive coefficient equal to 3.75, significant at the 1 percent level, leading to similar conclusions as our baseline estimates below. However, in contrast to our main specification, this reduced form equation does not provide us with information on the U.S. price index.}
\[
\ln \left( \frac{P_{gt}}{P_{g0}} \right) = \eta_0 + \eta_1 \text{China} P_g + \eta_2 \text{China} V_g. \tag{44}
\]

The first China WTO instrument on the right, \( \text{China} P_g \), is the change in Chinese exporter prices predicted using predicted values of TFP from equation (31), with \( \beta_1 \) being imposed at unity based on estimates from the quality adjusted equation (32). We employ results from column 5 in Table 5 to construct predicted prices as:

\[
\hat{p}_{iht} = \exp \left[ -1 \times \ln TFP_{ft} + 3.645 \times \ln \text{Input}_{\tau gt} - 1.165 \times \text{Process}_{fh} \times \ln \text{Input}_{\tau gt} \right],
\]

where for clarity we have included the superscript \( i = \text{China} \). This captures both the direct and indirect effects of lowering input tariffs on Chinese firms’ U.S. export prices. Letting the year 2000 represent the base period 0, we predict prices in 2006 relative to 2000. Then we construct the instrument as follows:

\[
\text{China} P_g \equiv \hat{p}_{iht} \ln \left( \prod_{fh \in \Omega_g} \frac{\hat{p}_{fh}^{ih}}{\hat{p}_{fh}^{i0}} \right), \tag{45}
\]

where \( \Omega_g = \Omega_{gt} \cap \Omega_{g0} \) is the set of varieties (at the firm-product level, \( fh \)) that were exported in industry \( g \) during both 2000 and 2006, and \( w_{fh} \) are the Sato-Vartia weights over these varieties. Note that this instrument uses only the predicted export prices for Chinese firms due to China’s WTO entry, and does not include any prices from other exporters to the U.S. nor prices of U.S. domestic producers. When we aggregate this industry-level instrument using the industry-level Sato-Vartia weights from (41), we find that it is substantial, equivalent to a \(-1.4\) percent contribution to the U.S. manufacturing price index, which we report in column 1 of Table 8.

The second WTO instrument uses the fitted values from the China firm export participation equation (29), with predicted probability of a positive outcome \( \hat{prob}_{fh} \). These predictions only include the tariff and gap terms, and do not include any of the fixed effects. We instrument for the Chinese variety term \( \lambda_{gt} \) with the predicted number of exporters obtained by summing the predicted probability of exporting from the participation equation (29), using results from column 1 in Table 5. The instrument for the China variety component in (40) is:

\[
\text{China} V_g \equiv W_{gt}^i \rho_{g-1} \left[ \ln \left( \frac{\sum_{fh \in \Omega_g} \hat{prob}_{fh}}{\sum_{fh \in \Omega_{g0}} \hat{prob}_{fh0}} \right) - \ln \left( \frac{\sum_{fh \in \Omega_g} \hat{prob}_{fh0}}{\sum_{fh \in \Omega_{g0}} \hat{prob}_{fh0}} \right) \right]. \tag{46}
\]

The terms in the brackets are constructed to reflect the terms \( \ln(\lambda_{gt}^i) - \ln(\lambda_{g0}^i) \) that appear in (40).\(^40\)

That term is raised to a power, \( W_{gt}^i \), reflecting China’s importance in overall U.S. expenditure in industry \( g \), and then divided by the estimated industry elasticity \( \hat{\rho}_g - 1 \). When we aggregate this

\(^40\)The estimated probabilities of exporting from (29) are meant to reflect estimated export shares of Chinese firms.
Table 8: Decomposition of WTO Effect on U.S. Manufacturing Price Index

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>US Price Index</th>
<th>China(\hat{P})(_g)</th>
<th>Other(\hat{P})(_g)</th>
<th>China(\hat{V})(_g)</th>
<th>Other(\hat{V})(_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth 2000-2006</td>
<td>0.031</td>
<td>0.013</td>
<td>0.049</td>
<td>-0.031</td>
<td>0.000</td>
</tr>
<tr>
<td>(\hat{ChinaP}_g) (aggregate)</td>
<td>3.535***</td>
<td>1.266***</td>
<td>3.210***</td>
<td>-0.055</td>
<td>-0.885***</td>
</tr>
<tr>
<td>(aggregate)</td>
<td>(0.815)</td>
<td>(0.124)</td>
<td>(0.686)</td>
<td>(0.194)</td>
<td>(0.337)</td>
</tr>
<tr>
<td>Growth x regression coefficient</td>
<td>-0.049</td>
<td>-0.018</td>
<td>-0.045</td>
<td>0.001</td>
<td>0.012</td>
</tr>
<tr>
<td>Contribution</td>
<td>65.2%</td>
<td>23.3%</td>
<td>59.2%</td>
<td>-1.0%</td>
<td>-16.3%</td>
</tr>
<tr>
<td>(\hat{ChinaV}_g) (aggregate)</td>
<td>1.607***</td>
<td>-0.086***</td>
<td>-0.003</td>
<td>1.744***</td>
<td>-0.049</td>
</tr>
<tr>
<td>(aggregate)</td>
<td>(0.157)</td>
<td>(0.024)</td>
<td>(0.132)</td>
<td>(0.037)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Growth x regression coefficient</td>
<td>-0.026</td>
<td>0.001</td>
<td>0.000</td>
<td>0.029</td>
<td>0.001</td>
</tr>
<tr>
<td>Contribution</td>
<td>34.8%</td>
<td>-1.9%</td>
<td>-0.1%</td>
<td>37.8%</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Total WTO effect</td>
<td>-0.076</td>
<td>-0.016</td>
<td>-0.045</td>
<td>-0.028</td>
<td>0.013</td>
</tr>
<tr>
<td>N</td>
<td>1,599</td>
<td>1,599</td>
<td>1,599</td>
<td>1,599</td>
<td>1,599</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.096</td>
<td>0.327</td>
<td>0.037</td>
<td>0.649</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Notes: The first row reports aggregate growth rates of the U.S. price index and each of its four components in equation (40) using the Sato-Vartia weights from equation (41). The first column growth rates are the aggregate value of each instrument in equations (45) and (46), using the same Sato-Vartia weights. The total WTO effect in the last row is the sum of the China WTO price and variety effects on the U.S. price index, with each effect calculated as the aggregate value of the instrument times the regression coefficient: the price component is \(3.535 \times -0.014 = -0.049\); the variety component is \(1.607 \times -0.016 = -0.026\). The remainder of the last row contains similar calculations for each component of the U.S. price index.

We include a constant term in this regression, which absorbs any price inflation that is common across industries \(g\) in either the U.S. manufacturing price index on the left, or the China price instrument on the right.\(^{41}\) We estimate this equation with weighted least-squares using the industry-level Sato Vartia weights \(W_{gt}\) from equation (42), and report the results in column 2 of Table 8.

From column 2 in Table 8, we see that lower Chinese export prices caused by China’s WTO entry (lower \(\hat{ChinaP}_g\)) reduce the U.S. price index, and more Chinese export variety due to WTO entry (lower \(\hat{ChinaV}_g\)) also lowers the U.S. price index, so U.S. consumers gain due to both lower Chinese export prices and more varieties. To convert these regression coefficients into aggregate effects, we multiply them by the aggregate growth in the two instruments (reported in column 1). Lower Chinese export prices due to WTO entry reduce the U.S. manufacturing price index by 4.9

\(^{41}\)In the regression we also include the Sato-Vartia weight on China in each industry \(g\), \(W_{gt}\), because it appears as an interaction term in (45) and (46).
percent, while greater Chinese export variety reduce the index by 2.6 percent. The sum of these two values indicates that the total WTO effect on the U.S. price index is \(-0.076\), that is the U.S. manufacturing price index was 7.6 percent lower in 2006 relative to 2000 due to China joining the WTO. Note that this fall is after correcting for any overall inflation in domestic and import prices that is common across industries in the constructed U.S. price index, since these common trends would be absorbed by the constant term in (44). So we interpret this 7.6 percent fall in prices as the real impact on U.S. manufacturing prices.

In the subsequent columns of Table 8, we regress each of the four price index components on the right of (40) on these two instruments. By construction, summing coefficients obtained on each instrument across the four regressions will give the same results to when we regressed the left-hand side of (40) on these two instruments. We call the first term on the right of (40) the U.S. import price index of common Chinese goods, or \(\hat{ChinaP}_g\); the second term is the common goods price index from all other countries (including the U.S.), or \(\hat{OtherP}_g\); the third term is the Chinese variety component of imports, or \(\hat{ChinaV}_g\); and the fourth term is the variety component from other countries (including the U.S.), or \(\hat{OtherV}_g\).

Our regression results reveal how each of our WTO-entry instruments affected each of the components of the U.S. price index. The largest effect is coming through \(\hat{ChinaP}_g\). As expected, the lower China price instrument lowers the China common goods price index (column 3), and this channel reduces U.S. prices by 1.8 percent. Interestingly, it also has a very big effect on competitor prices in column 4, which contribute a 4.5 percent reduction in U.S. manufacturing prices, which we explore further below. This strong effect may reflect the exit of inefficient competitor firms, lower marginal costs or lower markups.\(^{42}\) Further, a lower \(\hat{ChinaP}_g\) has an insignificant effect on net entry of Chinese competitor firms (column 5), but causes considerable exit among other competitors (column 6).

To interpret the effect of \(\hat{ChinaP}_g\) appearing in Table 8, consider the impact on \(\hat{OtherP}_g\) in column 4, which is the the second term on the right of (40). To be explicit, the coefficients appearing in column 4 are obtained from the regression (ignoring the included constant term):

\[
\hat{OtherP}_g = \sum_{j \in T_g \setminus \{i\}} W_{jg} \ln \left( \frac{P_{jg}}{P_{g0}} \right) = 3.210 \hat{ChinaP}_g - 0.003 \hat{ChinaV}_g. \tag{47}
\]

Notice that the dependent variable in this regression has the weights \(W_{jg}\) on each country, but that these weights sum to less than unity over the countries \(j \in T_g \setminus \{i\}\). Specifically, \(\sum_{j \in T_g \setminus \{i\}} W_{jg} = 1 - W_{igt}\), where \(W_{igt}\) is the Chinese share in U.S. consumption within industry \(g\). On the other hand, the instruments \(\hat{ChinaP}_g\) and \(\hat{ChinaV}_g\) defined in (45) and (46) have the weights \(W_{igt}\), which are just the Chinese share. The coefficient estimates obtained in column 4 are certainly influenced by having weights on the left and the right of (47) that differ from unity.

\(^{42}\)Atkin et al. (2017) find that one quarter of the price index impact of entry of global retailers in Mexico is due to pro-competitive effects on the prices charged by domestic stores.
To illustrate, suppose that we divide $\text{ChinaP}_g$ and $\text{ChinaV}_g$ by $W^i_t$, by which we mean the average over industries $g$ of the Chinese shares $W^i_{gt}$. That will ensure that the weights $W^i_{gt}/W^i_t$ average to unity over the industries used in the regression (47). Analogously, we divide the dependent variable in (47) by the weight $1 - W^i_t$, so that the industry weights $W^i_{gt}/(1 - W^i_t)$ average to unity. With this re-normalization of the left and right-side variables in (47), the regression becomes,

$$\frac{\text{OtherP}_g}{1 - W^i_t} = 0.538 \frac{\hat{\text{ChinaP}}_g}{W^i_t} - 0.000 \frac{\hat{\text{ChinaV}}_2}{W^i_t},$$

which is obtained directly from (47) because the average Chinese share of U.S. consumption over 2000-2006 across manufacturing industries is $W^i_t = 0.144$, so that $0.538 = 3.210(0.144/0.856)$; and similarly for the second term. With this re-normalization of weights, we see that the actual impact of the Chinese price instrument on the prices of other country’s exporters and U.S. firms selling in the U.S. market is a pass-through coefficient of 0.5. That is still a very sizable impact of Chinese prices on other prices in the U.S. market, when we consider that the Chinese share is only 0.144 on average. Still, this re-normalization helps us to properly interpret the rather large coefficient of 3.210 appearing in column 4 of Table 8.\(^{43}\)

Turning to the variety instrument in the lower half of the table, we see that increased Chinese variety due to WTO entry increases the China variety component in column 5 with a coefficient of 1.744. The contribution of this channel to U.S. prices is $-2.9$ percent, very close to our accounting calculation in column 7 of Table 7. The coefficient on other competitors (column 6) is negative, suggesting that there could be some exit, however it is insignificant. We find that a lower $\text{ChinaV}_g$ leads to a very small increase in Chinese prices in column 3, possibly due to some quality bias, but it has no effect on competitor prices in column 4.

The bottom row of Table 8 reports the contribution of each of the four components of the U.S. price index, and enables a decomposition of the total effect into contributions from each of the price index components. The two Chinese components combine to contribute a 4.4 percent reduction in this index. The contribution of the components for all other producers is a further 3.2 percent reduction. Nearly 60 percent of the overall reduction caused by WTO entry is therefore coming from the Chinese components of the U.S. price index.

Column 2 in Table 8 also decomposes the total WTO entry effect into the contributions from each of our instruments; and shows that two-thirds of the China WTO effect on the U.S. price index comes through the China common goods export price instrument. The finding that most of the gains come through a lower $\text{ChinaP}_g$ rather than a lower $\text{ChinaV}_g$ is somewhat surprising given the large extensive margin of exporting we documented. In fact, a large portion of the consumer gain comes from China’s impact on competitor prices. The source of all of the variation of the $\text{ChinaP}_g$

\(^{43}\)The coefficient reported in column (5) can be re-interpreted in the same way, i.e. by multiplying them by $(0.144/0.856) = 0.168$, which gives a coefficient of $-0.148$. The coefficients reported in column (2) and (4) do not need any re-interpretation, however, since if we divide the dependent variables and the instruments by the appropriate weight $W^i_t = 0.144$, the coefficient estimates do not change.
### Table 9: WTO Effect on U.S. Price Index: Robustness

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>HHI (1)</th>
<th>TFP (2)</th>
<th>Final Goods (3)</th>
<th>Inputs (4)</th>
<th>HS4 (5)</th>
<th>Other Reforms (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{China}P_g$</td>
<td>3.406***</td>
<td>3.412***</td>
<td>1.461**</td>
<td>1.978</td>
<td>3.800**</td>
<td>4.286***</td>
</tr>
<tr>
<td></td>
<td>(0.815)</td>
<td>(0.836)</td>
<td>(0.633)</td>
<td>(1.790)</td>
<td>(1.554)</td>
<td>(0.887)</td>
</tr>
<tr>
<td>Growth x regression coefficient contribution</td>
<td>-0.048</td>
<td>-0.048</td>
<td>-0.037</td>
<td>-0.014</td>
<td>-0.047</td>
<td>-0.056</td>
</tr>
<tr>
<td>Contribution</td>
<td>64.1%</td>
<td>64.9%</td>
<td>41.4%</td>
<td>60.8%</td>
<td>81.1%</td>
<td>66.7%</td>
</tr>
<tr>
<td>$\hat{China}V_g$</td>
<td>1.623***</td>
<td>1.599***</td>
<td>1.787***</td>
<td>1.057***</td>
<td>0.768**</td>
<td>1.724***</td>
</tr>
<tr>
<td></td>
<td>(0.158)</td>
<td>(0.157)</td>
<td>(0.137)</td>
<td>(0.238)</td>
<td>(0.315)</td>
<td>(0.161)</td>
</tr>
<tr>
<td>Growth x regression coefficient contribution</td>
<td>-0.027</td>
<td>-0.026</td>
<td>-0.052</td>
<td>-0.009</td>
<td>-0.011</td>
<td>-0.028</td>
</tr>
<tr>
<td>Contribution</td>
<td>35.9%</td>
<td>36.1%</td>
<td>58.6%</td>
<td>39.2%</td>
<td>18.9%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Total WTO effect</td>
<td>-0.075</td>
<td>-0.073</td>
<td>-0.090</td>
<td>-0.023</td>
<td>-0.058</td>
<td>-0.084</td>
</tr>
<tr>
<td>N</td>
<td>1,599</td>
<td>1,602</td>
<td>489</td>
<td>850</td>
<td>539</td>
<td>1,597</td>
</tr>
<tr>
<td>R²</td>
<td>0.104</td>
<td>0.095</td>
<td>0.310</td>
<td>0.089</td>
<td>0.116</td>
<td>0.103</td>
</tr>
</tbody>
</table>

Notes: Each column re-estimates column 1 in Table 8 with the following differences. Column 1 adjusts the US price index by the ratio of Herfindahl indexes. Column 2 uses an alternative measure of TFP. Column 3 restricts the set of industries to “final” goods (BEC categories 112, 122, 522, 51, 6). Column 4 restricts the set of industries to “inputs” (BEC categories 111, 121, 21, 22, 42, 53). Column 5 constructs the price index and the instruments at the HS 4-digit level. Column 6 uses predicted values to construct instruments from regressions that control for additional reforms.

The instrument is China lowering its own input tariffs, since the “gap” does not affect $\hat{China}P_g$ at all (the point estimate on the “gap” in column 6 of Table 5 is essentially zero), nor does it significantly affect Chinese firms’ TFP or export prices, as shown in Tables 4 and 5. In contrast, we did find that the gap increased the probability of export participation, as did China’s lower input tariffs, so the 35 percent contribution from the Chinese variety gain is due to both the reduction of tariff uncertainty and lower input tariffs. Column 1 of Table 5 reveals that China’s export participation growth owed much more to its input tariff reduction than to the reduction in the uncertainty of the U.S. tariffs its exporters faced; this comes from the direct coefficient on the input tariff, and more importantly on the dominant role of predicted TFP, which itself overwhelmingly depends on input tariffs. Therefore, we can conclude that the bulk of the aggregate WTO effect on U.S. manufacturing prices was due to China lowering its import tariffs on intermediate inputs.

### 5.4 Robustness

In this section we check the robustness of our results by estimating alternative specifications of our key equations. We first address concerns that arise from the fact that we only have firm-product level data for Chinese exports while we have to rely on more aggregated data for exports from other countries (i.e. HS 10-digit U.S. import data). In Appendix A we demonstrate that, under conditions of symmetric CES demand for a country’s products, we can improve the observed unit values for that country into a true price index by multiplying the unit value by a slightly generalized Herfindahl
index. We obtain Herfindahl indexes from a combination of PIERS firm-product level trade data, U.S. Census data, and national sources for Canada and Mexico. These data also give us more detailed information on variety growth within a country-HS category pair. We re-estimate equation (44) after replacing the dependent variable with a U.S. price index that incorporates this Herfindahl index adjustment and report the results in column 1 of Table 9. These results are very similar to our baseline results in column 1 of Table 8. This was expected, as for most countries measures of concentration change slowly over time.

Another concern we address relates to the construction of the TFP variable. For our baseline estimates, we use the Olley and Pakes (1996) approach. To check the sensitivity of our results, we re-estimate TFP using the De Loecker (2013) approach, which builds on Olley and Pakes (1996) and Ackerberg et al. (2015) by allowing exporting to affect learning. With these new TFP estimates, we re-estimate all of the specifications in Tables 4 and 5, and use those results to reconstruct the instruments \( \hat{C}hinaPg \) and \( \hat{C}hinaVg \). We re-estimate equation (44) with these reconstructed instruments and report the results in Column 2 of Table 9. Once again, our results are insensitive to this change, with a 7.3 percent total WTO entry effect, of which two-thirds is still due to the common goods price index instrument \( \hat{C}hinaPg \).

If tariff reductions on imported inputs are an important mechanism through which China’s WTO entry affects U.S. prices, then it is likely that the WTO entry effect will be stronger for final goods than for goods that are themselves inputs. This is because final goods are likely to incorporate more intermediate inputs, creating greater scope for input tariff reductions to increase productivity. We categorize HS 6-digit industries as either “Final Goods” or “Inputs” using the Broad Economic Categories (BEC) classification, and construct new U.S. price indexes for these two categories by recalculating the industry-level Sato-Vartia weights in equation (41). Columns 3 and 4 contain regression results for equation (44) for these two sets of goods. The largest gains are in the final goods industries, with a total WTO effect of \(-9\) percent. For final goods, almost 60 percent of the gains are attributed to the variety instrument \( \hat{C}hinaVg \). Intermediate input industries show a smaller total WTO effect of \(-2.3\) percent. We also note that final goods prices may feed more directly into consumer prices than do intermediate input prices.

We next address the concern that our analysis at the HS 6-digit level covers only a subsample of U.S. manufacturing. The 1,599 industries in our baseline analysis account for more than 60 percent of U.S. manufacturing consumption and 85 percent of China’s manufacturing exports to the U.S. The remaining industries were dropped due to missing components needed to construct the variables in equation (44); for example, in some industries we could not define a \( \lambda \) ratio. If our results only held for those industries and if China’s WTO entry had zero effect in the omitted industries, then our results still suggest at 4.5 percent reduction in the U.S. price index. To cover a larger share of the U.S. manufacturing sector we construct the U.S. price index and the two instruments at the HS 4-digit level, which raises the covered consumption share close to 80 percent and the covered China

\footnote{The PIERS data does not include reliable firm-level unit-value data, otherwise we would directly use that.}
export share to 90 percent. With more than 1200 codes, HS 4 is still a reasonably fine classification, and using this classification has the advantage of capturing the effect of China’s entry into one HS 6-digit industry on other industries within the HS 4-digit code. But, if HS 6-digit industries within an HS 4-digit code are unrelated, then regressing a 4-digit U.S. price index on instruments derived from a subset of those industries could attenuate the estimated effects. We re-estimate all of the elasticities at the HS 4-digit level and redo our entire analysis with industries defined at that level. Column 5 contains these estimates of equation (44). The estimated WTO entry effect is a bit lower than the baseline but remains sizable at −5.8 percent.

Finally, we address the concern that we have omitted some contemporaneous reforms that might be correlated with our input tariff and “gap” measures, and therefore may be incorrectly attributing gains from omitted reforms to our WTO entry instruments. We have already included the liberalization of export eligibility restrictions. We now incorporate additional reforms: the MFA; reform to import license controls; FDI liberalization; and tariffs on final goods. Some of these reforms might be considered as part of the WTO entry process; China’s output tariffs certainly fall into this category, and it is arguable as to whether other countries would have removed quotas on China’s textile and clothing exports if it had not joined the WTO. We prefer to confine our baseline results to incorporating the key mechanisms identified in the theory: productivity growth driven by WTO-mandated reductions to imported intermediate input tariffs causing increased export participation and lower export prices; and increased export participation driven by the reduced threat of non-MFN tariffs. We re-estimate our key TFP, export participation, and export price equations after including the additional reform variables, and present the results in Appendix Table C3. In our TFP equation the coefficients on our two predicted import instruments are essentially unaffected, while two of the additional reform variables are significant. The coefficient on the output tariff is negative, showing that lower tariffs on competing imports also increase productivity, consistent with Brandt et al. (2017). Import license reforms that increase the share of a firm’s imports that are not subject to import restrictions, ln(Unrestricted Import Share ft), also boost productivity.

Adding the additional reform variables to our export participation and export price equations in columns 2 and 3 of Appendix Table C3 does not greatly affect any of our previous coefficient estimates. The additional reform variables usually enter significantly with the expected signs. The probability of entering the export market increased and export prices fell in industries where MFA quotas were lifted. Export entry increased and export prices fell in industries where FDI restrictions were abolished. Import license liberalization also led to more export entry of firms with increased access to imports. We then reconstruct our WTO entry instruments using these regression results, re-estimate equation (44), and report the results in column 6 of Table 9. Our conclusions are little changed. The estimated total WTO effect is −8.4 percent, with two-thirds of the gain due to the export-price instrument ChinaP_g.
6 Conclusion

The value of China’s exports to the U.S. grew by 290 percent within six years of joining the WTO, with the bulk of this growth coming from new exporters. This extraordinary growth suggests the strong likelihood of a substantial impact on U.S. prices, which we quantify. Theoretical analysis of the channels through which China’s WTO entry can affect U.S. prices demonstrates how China’s substantial input tariff cuts produce productivity improvements that lead to lower prices from existing exporters and more firms exporting to the U.S. This firm-entry effect is enhanced by the reduction in tariff uncertainty following the U.S. granting China PNTR status. Building on this analysis, we construct and estimate empirical models of Chinese trade using highly disaggregated Chinese firm-product data for the period 2000 to 2006. We aggregate model estimates to construct predictions of the changes in prices of existing exporters and the growth of the number of exporters that stem solely from WTO entry. Regressions of exact CES price indexes for all U.S. manufacturing sales on these predicted changes in Chinese prices and export participation reveal that China’s WTO entry reduced the U.S. price index of manufactured goods by 7.6 percent over this period. Importantly, our analysis explicitly takes account of China’s trade shock on competitor prices and entry. We find that nearly 60 percent of the WTO entry effect comes through reductions in U.S. price indexes for Chinese goods, and 40 percent through reductions in price indexes for other competing goods. Surprisingly, given enormous new entry by Chinese firms, 65 percent of the WTO effect comes through the conventional price index component, due to competitors reacting strongly to reductions in the prices of Chinese products with their own price reductions. This effect could be due to less efficient firms exiting the U.S. market, lower marginal costs or lower markups.

Our paper is the first to show that the key mechanism underlying the China WTO effect on U.S. prices is China lowering its own import tariffs on intermediate inputs. Lower Chinese tariffs on intermediate inputs not only directly reduced Chinese firms’ costs, but increased the value and range of its firms’ imports of intermediate inputs, boosting their productivity. Lower marginal costs caused increased entry into the U.S. market and lower Chinese export prices. We also study how the granting of PNTR upon WTO entry affected Chinese exports —a channel that has received a lot of attention—and consistent with the literature we show that PNTR does result in higher entry into exporting. However, we find no effect of PNTR on Chinese firms TFP or export prices. Therefore, most of the WTO effect on U.S. price indexes stems from China’s lower input tariffs, accounting for more than two-thirds of the overall effect.
References


Appendix

A Using Herfindahl Indexes to Improve Unit Value Indexes

For exporting countries other than China, we use HS-10 digit U.S. import data to construct unit-values for each country. Denoting exporting firms by the subscript $f$, the observed unit value is:

$$uv_{gt}^j \equiv \left( \frac{\sum_f p_{fgt}^j q_{fgt}^j}{\sum_f q_{fgt}^j} \right).$$

The following result shows how these unit values are related to the CES index defined analogously to equation (4), but assuming symmetry over products,

$$P_{gt}^j = \left( \sum_f \left( p_{fgt}^j \right)^{1-\rho_g} \right)^{\frac{1}{1-\rho_g}}.$$  (50)

**Lemma 1.** With symmetry over products, the CES index is related to unit values by

$$P_{gt}^j = uv_{gt}^j H_{gt}^j,$$

where $H_{gt}^j \equiv \sum_f \left( s_{fgt}^j \right)^{\frac{\rho_g}{\rho_g-1}}$.

**Proof:**

Making use of the symmetric CES demand in (20) and adding the country superscript $j$, we can rewrite the unit value as,

$$uv_{gt}^j = \left( \frac{\sum_f (p_{fgt}^j)^{1-\rho_g}}{\sum_f (p_{fgt}^j)^{-\rho_g}} \right).$$  (51)

Again using symmetric demand in (20), it follows that,

$$s_{fgt}^j \equiv \frac{p_{fgt}^j q_{fgt}^j}{X_{gt}^j} = \left( \frac{p_{fgt}^j}{P_{gt}^j} \right)^{1-\rho_g} \Leftrightarrow p_{fgt}^j = P_{gt}^j \left( s_{fgt}^j \right)^{\frac{1}{1-\rho_g}} \Leftrightarrow \sum_f (p_{fgt}^j)^{-\rho_g} = (P_{gt}^j)^{-\rho_g} \sum_f \left( s_{fgt}^j \right)^{\frac{\rho_g}{\rho_g-1}}.$$  

Substituting into (51) and using (50), we readily obtain,

$$uv_{gt}^j = \frac{\sum_f (p_{fgt}^j)^{1-\rho_g}}{(P_{gt}^j)^{-\rho_g} \sum_f \left( s_{fgt}^j \right)^{\frac{\rho_g}{\rho_g-1}}} = P_{gt}^j \left( \frac{\sum_f (p_{fgt}^j)^{1-\rho_g}}{(P_{gt}^j)^{1-\rho_g} \sum_f \left( s_{fgt}^j \right)^{\frac{\rho_g}{\rho_g-1}}} \right) = P_{gt}^j H_{gt}^j,$$

so it follows that $P_{gt}^j = uv_{gt}^j H_{gt}^j$. QED

To interpret this result, $H_{gt}^j$ is a modified Herfindahl index depending on the elasticity $\rho_g$, and if $\rho_g = 2$ then it is the usual Herfindahl index, as we will use empirically. For countries exporting to the U.S. other than China we use their unit-values at the HS 10-digit level. In a slight abuse of notation, let $\omega$ in (33) refer to the HS 10-digit goods within each HS 6-digit industry, and let $p_{gt}(\omega)$ in (33) denote the CES price indexes at the HS 10-digit level. Applying the Lemma, we will replace the CES indexes $p_{gt}(\omega)$ by $uv_{gt}(\omega) H_{gt}^j$, where $uv_{gt}(\omega)$ are the unit values at the HS 10-digit level. So the unit
values times the Herfindahls should appear in the second term of (40) for all exporters other than China. In principle we should be using the Herfindahl indexes of exporters at the HS 10-digit level, but in practice due to data limitations we use these indexes at the HS 6-digit level (see Appendix B). For each HS 6-digit industry, we can construct the variety terms $\lambda_{gt}$ for the products exported by those countries and the change in variety using (35). We also construct the Sato-Vartia index for each HS 6-digit industry $g$ and country using the unit-values times their Herfindahls, $u_{jt}^{\omega}(\omega)H_{jt}$.

B Data construction

ASIF data: Chinese firm-level data comes from the Annual Survey of Industrial Firms (ASIF) conducted by the National Bureau of Statistics of China for 1998 to 2007. The survey includes all state-owned enterprises and private enterprises with annual sales of RMB five million (about $800,000) or more. The data set includes information from balance sheets of profit and loss and cash flow statements of firms, and provides detailed information on firms’ identity, ownership, export status, employment, capital stock, and revenue. There is a large entry spike of 43 percent in 2004 (more than double in other years). This has been attributed to improvements in the business registry in the industrial census in 2004 so more privately owned firms were included in the survey.

The ASIF data records each firm’s main industrial activity at the CIC 4-digit level, which comprise over 500 industrial codes. The ASIF has a firm indicator called “id”. Some firms change their id because of changes in name, location, or ownership type, yet they are still the same firm; these have been mapped to a consistent “panelid” so that each firm maintains a unique identifier. The mapping is done through a two-step procedure. We first link firms by name. For those not linked by name, we then link by zip code, telephone number, and legal person representatives (i.e. two observations are linked if they have the same zip code, telephone number and legal person representative). The number of firms shrinks by 7 percent after the mapping.

Customs data: The customs data includes the universe of firms, reporting import and export values and quantities at the HS 8-digit level. Each firm has a firm identifier called “partyid”, different from the one assigned in the ASIF data. Some firms change their partyid because of changes in location, firm type, or trade mode. Thus, we also link firms in the customs data to create a firm identifier that is unique over time, as a robustness check. The linking procedure is similar to the one for the ASIF data, except that with the customs data we link firms using the monthly trade data. The number of firms shrinks by 5 percent due to this mapping.

Matching firm id’s in customs and ASIF data: Although both the customs data and the ASIF report firm codes, they come from different administrative systems and have no common elements. Thus we construct a concordance between the two data sets using information on the firm name as the main matching variable and the zip code and telephone number as a supplement, as in Yu (2015).
Table B1: Number of Firms

<table>
<thead>
<tr>
<th>year</th>
<th># firms in ASIF</th>
<th># exporters in ASIF</th>
<th># exporters in customs</th>
<th># US exporters in customs</th>
<th>share of US export value in matched sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>138,431</td>
<td>38,854</td>
<td>62,746</td>
<td>23,437</td>
<td>0.41</td>
</tr>
<tr>
<td>2001</td>
<td>151,017</td>
<td>43,978</td>
<td>68,487</td>
<td>26,172</td>
<td>0.44</td>
</tr>
<tr>
<td>2002</td>
<td>162,780</td>
<td>49,824</td>
<td>78,613</td>
<td>31,835</td>
<td>0.47</td>
</tr>
<tr>
<td>2003</td>
<td>179,151</td>
<td>56,737</td>
<td>95,690</td>
<td>39,556</td>
<td>0.50</td>
</tr>
<tr>
<td>2004</td>
<td>252,540</td>
<td>81,435</td>
<td>120,590</td>
<td>49,878</td>
<td>0.55</td>
</tr>
<tr>
<td>2005</td>
<td>250,909</td>
<td>84,251</td>
<td>144,031</td>
<td>63,193</td>
<td>0.53</td>
</tr>
<tr>
<td>2006</td>
<td>277,863</td>
<td>89,329</td>
<td>171,205</td>
<td>76,081</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Using this methodology, we were able to match 32-36 percent of firms in the customs data, which account for 46 percent of the value of exports to the world and 51 percent of the value of U.S. exports. The details of the matching procedure are as follows. When the firm name is identical in the two data sets the match is straightforward. If not, we use information on zip codes and telephone numbers to aid in the matching process, given that the telephone number is unique within a region.

The total number of exporters is reported in Table B1. The striking pattern to emerge from Table B1 is the massive net entry into exporting. First, note that the number of firms in the ASIF data doubled over the sample period, with 278,000 firms by 2006. But since only firms with at least 5 million RMB are included in the sample, some of this increase in firm numbers in the sample is due to firms crossing this threshold. These data comprise a large portion of the manufacturing sector. Comparing the ASIF data with the 2004 census, we find these data cover 91 percent of the manufacturing sector in terms of output, 71 percent in terms of employment, and 98 percent in terms of export value (see Brandt et al. (2017) for more details.) Of more relevance for our study is the pattern for exporters. In the customs data, we see that the number of U.S. exporters more than tripled over the sample period. This represents actual net entry into the market since the customs data represents the universe of exporters. This pattern is also mirrored for exporting to the world, and in the overlapping sample.

**Product concordances:** We make the China HS 8-digit codes consistent over time, using a concordance from China Customs. We map all HS8 codes to their earliest code in the sample. The Chinese Industrial Classifications (CIC) were revised in 2003, so we used a concordance from the China National Bureau of Statistics (NBS) to bridge the two sets of codes, which we mapped to the new codes. As usual with concordances, we found that some of these mappings were not one-to-one so this required some groupings of the codes. The manufacturing codes comprise those CIC codes that begin with 13 to 44: there are 502 distinct CIC manufacturing codes in the pre-2003 revision and 432 after we group some industry codes to account for the many-to-many mappings.

We mapped the HS8 codes to CIC codes using a partial concordance from NBS, and completed the rest manually. This required some additional groupings of the CIC codes. The mapping between HS8 and IO codes uses the HS2002 version so we converted that to HS 2000 codes. We built on a concordance from HS6 2002 to IO from one constructed manually by Rudai Yang, Peking University,
using a mapping from HS to SITC to IO. The mappings from IO_2002 to CIC_2003 and IO_2002-CIC_2002 were downloaded from Brandt et al. (2012) (http://www.econ.kuleuven.be/public/n07057/China/).

We made the U.S. reported HTS 10 codes time consistent using the concordance from Pierce and Schott (2012). Once we had both the China reported HS codes and the U.S. reported codes mapped back to 2000, we could match them to a consistent HS 6-digit 1996 revision.

**U.S. domestic sales:** We employ a concordance from HS 10-digit to NAICS 6-digit to convert U.S. production data from NAICS 6-digit to HS 6-digit. We follow Feenstra and Weinstein (2017) (p45 of their Appendix) and assume that the domestic share \( \text{share}_k \) in total consumption is the same in each HS 10-digit category as it is in the corresponding NAICS 6-digit category. Denoting a NAICS industry by \( k \), and U.S. domestic sales as \( \text{domestic}_k \equiv \text{production}_k - \text{exports}_k \), then domestic sales at the HS 10-digit level is obtained as,

\[
\text{domestic}_{h} = \left( \frac{\text{share}_k}{1 - \text{share}_k} \right) * \text{Imports}_{h}.
\]

Once we have U.S. domestic sales at HS10, we can easily aggregate to HS 6-digit and combine with the import data to get total sales in the U.S. market.

**Herfindahl Indexes:** The Herfindahl indexes used to adjust unit values in Appendix A are from Feenstra and Weinstein (2017). These were constructed using PIERS firm-product level data from bills of lading for all sea shipments and U.S. Census data to adjust for land and air shipments. For Canada and Mexico, they were provided directly from their respective countries. Originally at the HS4-country level, we convert these Herfindahls to our HS1996 grouped codes by assuming that each 6-digit code has the same Herfindahl as its overlying 4-digit code within each country. When concording back to HS1996 6-digit codes, there are some many-to-many correspondences for which we assume that the value for each HS6 code is a simple average of the values for the related HS4 codes.

The Herfindahls are typically available for two years. For Canada, the Herfindahls are available in 1996 and 2005. For Mexico, they are available for 1993 and 2003. For other countries, they available for 1992 and 2005. We use linear interpolation and linear extrapolation to estimate the Herfindahls for 2000 and 2006. In cases where a country-HS6 Herfindahl does not exist for one or both years, we drop that Herfindahl from our sample.

**Elasticities of Substitution:** We follow the methodology described and coded in Appendix 2.1 of Feenstra (2010) to estimate three sets of elasticities of substitution, all at the HS6 industry level: (i) Elasticities of substitution between firm-HS8 Chinese varieties exported to the U.S. (China \( \rho_{g} \)); (ii) Elasticities of substitution between varieties sold in the U.S. by all non-Chinese exporters (Other \( \rho_{g} \)); and (iii) Elasticities of substitution across HS 6-digit varieties (\( \sigma_{g} \)). We do not have access to firm-level data for non-Chinese exporters, so we use the most disaggregated data available to us, which is
U.S. reported import data at the country-HS 10-digit level. We estimate “Other $\rho_g$” as the elasticity of substitution across HS10 varieties produced by the same country. We do this by pooling the top 40 exporting countries to the U.S. (which account for 95% of total U.S. manufacturing imports) and constrain Other$\rho_g$ to be the same for all exporting countries other than China. There were too few observations for some countries to estimate country-specific elasticities. We assume that Other $\rho_g$ also applies to U.S. produced varieties. To estimate $\sigma_g$ we construct exact price indices for each HS6-country, using the $\rho'_g$s to construct the exact price index for each country as in equations (33) and (36), and estimate elasticities of substitution across each of these country-HS6 digit product groups. We ensure there are a minimum of 3 country varieties within each HS 6-digit estimation, and drop the top and bottom 1 percentiles of the $\lambda$ ratios and exact price indexes. For each set of elasticities, we filled in any missing HS 6-digit elasticity with the median estimate within the same HS4 code. All data is cleaned by dropping price ratios (the unit value in $t$ relative to $t - 1$) less than $1/10$ or greater than $10$.

C Additional Tables

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type of trade</th>
<th>Total export growth (%)</th>
<th>EM proportion</th>
<th>Share of total US</th>
<th>Share of total US growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full sample</td>
<td>Variety defined at HS6-firm</td>
<td>290</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variety defined at HS4-firm</td>
<td>290</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variety defined at HS2-firm</td>
<td>290</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-samples</td>
<td>Nonprocessing trade</td>
<td>356</td>
<td>0.90</td>
<td>0.36</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Consumer goods</td>
<td>173</td>
<td>0.89</td>
<td>0.38</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Nontraders</td>
<td>371</td>
<td>0.85</td>
<td>0.85</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Private firms</td>
<td>436</td>
<td>0.87</td>
<td>0.84</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Foreign firms</td>
<td>405</td>
<td>0.85</td>
<td>0.68</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>ASIF overlap</td>
<td>329</td>
<td>0.80</td>
<td>0.56</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Notes: The top half of the table reports the share of Chinese export growth that is due to the extensive margin (“EM”) when varieties are defined as HS6-firm, HS4-firm, and HS2-firm pairs. The bottom half of the table reports export growth decompositions for HS8-firm varieties for different subsamples of the data: nonprocessing trade; consumer goods; nontraders; private firms; foreign firms; and firms present in both the ASIF and customs data. For each subsamples we report: total export growth; the proportion of that export growth due to the extensive margin; the share of those exports in total Chinese exports to the US; and the share of that export growth in total Chinese export growth to the U.S.
<table>
<thead>
<tr>
<th>Chinese Industrial Classification</th>
<th>Olley-Pakes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labor</td>
<td>Capital</td>
</tr>
<tr>
<td>13 Processing of Foods</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>14 Manufacture of Foods</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>15 Manufacture of Beverages</td>
<td>0.39</td>
<td>0.63</td>
</tr>
<tr>
<td>17 Manufacture of Textile</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>18 Manufacture of Apparel, Footwear &amp; Caps</td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>19 Manufacture of Leather, Fur, Feather &amp; Related Products</td>
<td>0.48</td>
<td>0.30</td>
</tr>
<tr>
<td>20 Processing of Timber, Manufacture of Wood, Bamboo, Rattan, Palm &amp; Straw Products</td>
<td>0.36</td>
<td>0.43</td>
</tr>
<tr>
<td>21 Manufacture of Furniture</td>
<td>0.56</td>
<td>0.39</td>
</tr>
<tr>
<td>22 Manufacture of Paper &amp; Paper Products</td>
<td>0.27</td>
<td>0.44</td>
</tr>
<tr>
<td>23 Printing, Reproduction of Recorded Media</td>
<td>0.27</td>
<td>0.49</td>
</tr>
<tr>
<td>24 Manufacture of Articles For Culture, Education, &amp; Sport Activities</td>
<td>0.44</td>
<td>0.33</td>
</tr>
<tr>
<td>25 Processing of Petroleum, Coking, &amp; Nuclear Fuel</td>
<td>0.22</td>
<td>0.61</td>
</tr>
<tr>
<td>26 Manufacture of Raw Chemical Materials</td>
<td>0.28</td>
<td>0.49</td>
</tr>
<tr>
<td>27 Manufacture of Medicines</td>
<td>0.32</td>
<td>0.42</td>
</tr>
<tr>
<td>28 Manufacture of Chemical Fibers</td>
<td>0.36</td>
<td>0.54</td>
</tr>
<tr>
<td>29 Manufacture of Rubber</td>
<td>0.31</td>
<td>0.40</td>
</tr>
<tr>
<td>30 Manufacture of Plastics</td>
<td>0.33</td>
<td>0.39</td>
</tr>
<tr>
<td>31 Manufacture of Non-metallic Mineral Products</td>
<td>0.19</td>
<td>0.53</td>
</tr>
<tr>
<td>32 Smelting &amp; Processing of Ferrous Metals</td>
<td>0.38</td>
<td>0.49</td>
</tr>
<tr>
<td>33 Smelting &amp; Processing of Non-ferrous Metals</td>
<td>0.33</td>
<td>0.48</td>
</tr>
<tr>
<td>34 Manufacture of Metal Products</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>35 Manufacture of General Purpose Machinery</td>
<td>0.32</td>
<td>0.44</td>
</tr>
<tr>
<td>36 Manufacture of Special Purpose Machinery</td>
<td>0.29</td>
<td>0.58</td>
</tr>
<tr>
<td>37 Manufacture of Transport Equipment</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>39 Electrical Machinery &amp; Equipment</td>
<td>0.43</td>
<td>0.41</td>
</tr>
<tr>
<td>40 Computers &amp; Other Electronic Equipment</td>
<td>0.49</td>
<td>0.39</td>
</tr>
<tr>
<td>41 Manufacture of Measuring Instruments &amp; Machinery for Cultural Activity &amp; Office Work</td>
<td>0.31</td>
<td>0.51</td>
</tr>
<tr>
<td>42 Manufacture of Artwork &amp; Other Manufacturing</td>
<td>0.42</td>
<td>0.28</td>
</tr>
<tr>
<td><strong>Average: all manufacturing</strong></td>
<td><strong>0.37</strong></td>
<td><strong>0.45</strong></td>
</tr>
</tbody>
</table>

Notes: We estimate the production coefficients following Olley and Pakes (1996).
<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>$ln(TFP_{ft})$</th>
<th>$I_{X_{ft}}=1$ if $X_{ft}&gt;0$</th>
<th>$ln(price_{ft})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ln(M_{max,ft})$</td>
<td>-0.042*** (0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ln(M_{tot,ft})$</td>
<td>0.051*** (0.005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ln(TFP_{ft})$</td>
<td></td>
<td>1.944*** (0.032)</td>
<td>-1.000$^d$</td>
</tr>
<tr>
<td>$ln(Input_{\tau_{gt}})$</td>
<td>0.493 (0.451)</td>
<td>-1.638*** (0.423)</td>
<td>3.344** (1.472)</td>
</tr>
<tr>
<td>$ln(Input_{\tau_{gt}}) \times Process_{fh}$</td>
<td></td>
<td>-0.190 (0.148)</td>
<td>-0.987* (0.518)</td>
</tr>
<tr>
<td>$Process_{fh}$</td>
<td></td>
<td>0.019 (0.012)</td>
<td>0.097 (0.063)</td>
</tr>
<tr>
<td>$ln(PD_{gt})$</td>
<td></td>
<td>0.023 (0.084)</td>
<td>0.489** (0.189)</td>
</tr>
<tr>
<td>$MFA_{2002_{g,t-1}}$</td>
<td>-0.010 (0.032)</td>
<td>0.051*** (0.006)</td>
<td>-0.045* (0.023)</td>
</tr>
<tr>
<td>$MFA_{2005_{g,t-1}}$</td>
<td>-0.008 (0.016)</td>
<td>0.083*** (0.010)</td>
<td>-0.121*** (0.033)</td>
</tr>
<tr>
<td>$FDI_{h,t-1}$</td>
<td>0.040 (0.027)</td>
<td>-0.023** (0.010)</td>
<td>0.090** (0.045)</td>
</tr>
<tr>
<td>$ln(Output_{\tau_{nt}})$</td>
<td>-0.288* (0.156)</td>
<td>0.017 (0.095)</td>
<td>-0.268 (0.230)</td>
</tr>
<tr>
<td>$ln(Unrestricted Import Share_{ft})$</td>
<td>0.029** (0.014)</td>
<td>0.008** (0.004)</td>
<td>0.012 (0.041)</td>
</tr>
<tr>
<td>$ln(Gap_{g}) \times WTO_{t}$</td>
<td></td>
<td></td>
<td>0.068* (0.035)</td>
</tr>
<tr>
<td>$ln(ShareEligible_{gt})$</td>
<td></td>
<td></td>
<td>-0.021 (0.024)</td>
</tr>
<tr>
<td>$ln(ShareEligible_{gt}) \times Foreign_{f}$</td>
<td></td>
<td></td>
<td>0.252*** (0.017)</td>
</tr>
<tr>
<td>$HS8 Industry FE$</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$Year FE$</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$Firm FE$</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td># obs.</td>
<td>79,602</td>
<td>3,971,038</td>
<td>1,313,431</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.692</td>
<td>0.130</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Notes: Column 1 is parallel to column 3 in Table 4; column 2 relates to column 1 in Table 5; and column 3 is analogous to column 5 in Table 5. The MFA variables are dummy variables equal to 1 for HS 6-digit products where the quota has been lifted. FDI is an indicator variable equal to 1 if there was a restriction on that industry at the HS 8-digit level. Output$\tau_{ht}$is the HS 8-digit Chinese import tariff on that industry. Import licenses are at the firm-year level, calculated as the share of imports that are subject to import licenses.